
System Benchmarking and Measurement

Mayank Jain and Jonathan Woenardi

University of California, San Diego

1 Introduction

As part of the CSE 221: Graduate Operating Systems course,
this project focuses on characterizing and understanding sys-
tem performance, specifically in the context of operating sys-
tems and applications. We address the need to empirically
determine the performance of hardware components like the
CPU, RAM, file system, and network, and how they impact
system services and user experience. Many of these perfor-
mance metrics require experimental investigation, as they are
not readily available in documentation.

The team comprises of Mayank Jain, and Jonathan Woe-
nardi. All experiments were coded, debugged and discussed
by both. We required a total of 80 hrs for the entire project.

1.1 Testing Methodology
The following steps were taken to ensure accuracy, repro-
ducibility and correctness of all experiments:

1. Used nice to boost process priority to avoid frequent
context switches.

2. Restricted measurement programs to using a single core
to prevent multi-process context switches wherever nec-
essary.

3. Verified constant_tsc is set for all processors to
workaround dynamically adjusted CPU frequency.

4. Used rdtsc and rdtscp for reliably reading cycle coun-
ters with low-overhead.

5. All programs were written in C programming language,
and were compiled with GNU C Compiler (gcc) with
-O0 flag, which completely disables most optimizations
wherever necessary.

$ gcc --version
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0

6. When measuring an operation using multiple iterations,
all runs of an iteration were considered as a single trial
and statistics were calculated across multiple trials (as
opposed to an individual iteration). For example, we ran
a function call 1000 times, averaged the execution time
and repeated this for 10 times to calculate the reported
mean and standard deviation. The values are printed to
stdout and a separate python script collects these values
and calculates the mean and standard deviation of the
data. All experiments were run 10 times wherever not
specified.

1.2 Format

Every operation contains four sections, namely methodology,
estimates, results and analysis. Methodology describes how
the experiment was performed. Estimates outline our predic-
tions for the execution time based on our knowledge. Results
indicate our estimates based on base hardware performance
and software overhead and include a table with mean, standard
deviation and graphs showing relationships between variables
if any. We discuss the results in the Analysis section.

2 Machine Description

We decided to use a Gigabyte P55W v5 laptop running
Ubuntu (hereafter, referred to as the test machine). We re-
ferred to its technical specifications document [2, 4, 5], utili-
ties like sysctl provided by the operating system, and online
databases of laptops and their features to gather more infor-
mation about the machine.

2.1 Processor

The test machine’s processor is an Intel Core i7 6700HQ
which is based on the Skylake microarchitecture. It is fabri-
cated on a 14 nm process, has a base frequency of 2.6 GHz
and a turbo boost frequency of up to 3.5 GHz. The latency and
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throughput of each instruction depend on the microarchitec-
ture. Since clock time is the reciprocal of the clock frequency,
every clock cycle takes 1

2.6 GHz = 0.384 ns.
Each core has its own L1-instruction cache, L1-data cache

and L2 cache, while the L3 cache is shared between all of
the cores. L1 is the fastest and smallest. L3 is far slower, but
biggest between the three.

Specification Intel Core i7 6700HQ
Frequency 2.60GHz
Cycle time 1 / 2.60G = 0.38ns
Number of cores 4
Threads per core 2
Core speed 1994.6 MHz
L1 Data Cache 4 x 32 KB (8-way, 64-byte line)
L1 Instruction Cache 4 x 32 KB (8-way, 64-byte line)
L2 Cache 4 x 256 KB (4-way, 64-byte line)
L3 Cache 6 MB (12-way, 64-byte line)

Table 1: CPU specifications

2.2 Memory and I/O Bus

The machine possesses a single DDR4 8GB memory bank.
The I/O bus type is PCIe 3.0.

Memory Size 8 GB
Memory type DDR4
Memory bus type DDR4-2133 (1066 MHz)
Max bandwidth 68.2 GB/s

Table 2: Memory specifications

2.3 Network

Name Intel Dual Band Wireless-AC 8260
Bands 2.4, 5 GHz
Max speed 867 Mbps
Wifi Wi-Fi 5 (802.11ac)

Table 3: Network specifications

2.4 Disk

The machine has two disks, one SSD and one HDD, and
the descriptions of the disks are provided in Table 4 and 5.
However, for the purpose of this project, we only use a 128
GB partition of the HDD disk since the operating system was
installed on it.

Name LITEON CV1-8B128
Type SSD
Capactity 119.2 GB
Bus Type SATA (II)

Table 4: SSD specifications

Name HGST HTS721010A9E630
Type HDD
Capactity 931.5 GB
Bus Type SATA (II)
Rotation Speed 7200 RPM
Buffer Size 32768 KB
Media Transfer Rate 160.5 MB
Average Latency 4.2ms

Table 5: HDD specifications

2.5 Operating System and Architecture
The machine runs on Ubuntu, a modern operating system
which is a Linux distribution based on Debian.

Operating System Ubuntu
Version 22.04.03 LTS
Hardware Platform x86_64
Page Table 32448 kB
Byte Order Little Endian
Address Sizes 39 bits physical, 48 bits virtual

Table 6: Operating System and Architecture

3 CPU, Scheduling and OS Services

3.1 Measurement Overhead
Measurement overhead refers to the extra computational re-
sources and time introduced by the process of measuring code
execution time or clock cycles. Since it affects measurement
accuracy, we want to account for this overhead in the pro-
ceeding experiments while calculating software and hardware
performance.

3.1.1 Methodology

Intel offers RDTSC and RDTSCP instructions to help developers
with accurate profiling of their code. RDTSC reads the current
value of the processor’s time-stamp counter into the specified
registers. RDTSCP returns the current processor’s ID in addi-
tion to reading the time-stamp counter. However, RDTSC is not
a serializing instruction i.e. it does not necessarily wait until
all previous instructions have been executed before reading
the counter. To circumvent the problem of out-of-order exe-
cution, we add a CPUID instruction (which returns the details

2



of the processor) right before RDTSC since it is a serializing
instruction and one with least overhead of its own. To restrict
ourselves to measuring the measurement overhead, we sim-
ply record the timestamp counter twice without doing any
extra operations. The start counter is subtracted from the final
counter to calculate the number of cycles that have elapsed.

3.1.2 Estimates

We estimate that the hardware overhead of reading the time-
stamp registers and calculating the elapsed time is 10+ cycles
accounting for the extra MOV and CPUID instructions we add
for synchronization. Software overhead can be 5 cycles to
account for the bitwise operations for forming the 64 bit time
stamp counter from the two separate 32 bit registers.

3.1.3 Results

• Mean: 35.72 cycles or 13.70ns

• Standard Deviation: 1.55 cycles or 0.59ns

Base hardware performance 3.85+
Estimate of software overhead 1.50+
Prediction of operation time 5.35+
Measured operation time 13.70

Table 7: Measurement Overhead (nanoseconds)

3.1.4 Analysis

Our results show that we underestimated the overhead of
our timing mechanism by a small margin. We believed that
CPUID and RDTSCP, which is a serializing version of RDTSC,
executes in a handful of cycles only.

3.2 Loop Overhead
Loop overhead refers to the additional computational re-
sources and time consumed by the loop control and iteration
management operations within a loop structure such as in-
crementing loop counters, evaluating loop conditions, and
branching.

3.2.1 Methodology

Building on the same method for calculating measurement
overhead, we simply introduce an empty loop between the two
points where we record the time counter. We ensure the loop
is not optimized out by setting the -O0 flag while compiling.

3.2.2 Estimates

We estimate the loop overhead for one iteration to be roughly
5 or less cycles after inspecting the resulting assembly code.

3.2.3 Results

• Mean: 6995.2 cycles or 2675.07ns

• Standard Deviation: 525.49 cycles or 202.11ns

• Loop overhead = (Time taken to run n iterations of a
emptyloop - Measurement Overhead) / n

(2675.07−13.70)/1000 = 2.66ns

Base hardware performance -
Estimate of software overhead 5
Prediction of operation time 5
Measured operation time 2.66

Table 8: Loop Overhead (nanoseconds)

The measured loop overhead was 7 cycles which is equal
to 2.66ns.

3.2.4 Analysis

A loop would not add any hardware overhead. In terms of
software overhead, we estimate that 5 additional cycles will
be required for each iteration of the loop. This number was
arrived at by examining the assembly code that implements
the loop and assuming that each instruction executes in a
single cycle.

3.3 Procedure call overhead
Procedure call overhead is the additional computational re-
sources and time required to initiate, manage, and return from
a function or subroutine call in a program, encompassing
things like parameter passing, setting up stack, saving regis-
ters, and branching.

3.3.1 Methodology

Building on the method for calculating loop overhead, we
now call eight different functions with an empty body. Each
function has a different number of integer arguments from
0 to 7. We assume that an empty body is a good approxima-
tion for calculating the procedure call overhead itself since
it does not involve any computation which could pollute our
measurements.

3.3.2 Estimates

After inspecting the resulting assembly code, we estimate
an additional overhead of 1 clock cycle for every additional
argument added to the procedure call. It roughly translates to
0.38ns additional latency per argument and we think proce-
dure call with no arguments should take about 0.1ns.
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Figure 1: Procedure Call Overhead Time

3.3.3 Results

Following are the observations for trials using different num-
ber of arguments:

Argument Count Mean Standard Deviation
0 0.350 0.051
1 0.554 0.017
2 0.706 0.029
3 0.835 0.036
4 1.098 0.013
5 1.399 0.008
6 1.676 0.009
7 2.144 0.008

Table 9: Procedure Call Overhead (nanoseconds)

On fitting a regression on the results, we obtained

y = 0.244x+0.24 (1)

where y refers to the procedure call overhead (in ns) and x
refers to the number of arguments passed to the procedure.
The increment overhead of an argument is 0.244 ns.

Base hardware performance -
Estimate of software overhead 0.38x+0.1
Prediction of operation time 0.38x+0.1
Measured operation time 0.244x+0.24

Table 10: Procedure Call Overhead (nanoseconds)

3.3.4 Analysis

The provided data shows that the procedure call overhead
increases with the number of arguments in a generally con-
sistent and precise manner. The overhead is lowest with zero

arguments (0.350) and increases incrementally as arguments
are added, with some variation in the rate of increase.

3.4 System Call
System call overhead is the additional computational re-
sources and time required to initiate, manage, and return from
a request made by a user-level program to the operating sys-
tem’s kernel and includes steps such as transitioning from
user mode to kernel mode, passing parameters, and executing
the requested kernel service.

3.4.1 Methodology

Building on the method for calculating loop overhead, we now
call syscall(SYS_getpid) between the two points where
we record the time counter.

3.4.2 Estimates

getpid() is a simple system call. It only retrieves the process
ID (PID) from a readily accessible register within the pro-
cess’s context. This suggests minimal kernel involvement and
potential for fast execution. Arkanis Development measured
a latency of 120ns for clock_gettime and 220ns for write
on Linux (2017) [6]. While not identical since the author
cites vDSO optimizations, these calls involve similar data ac-
cess and suggest a similar ballpark for getpid(). To exclude
the caching effect, we think getpid() should be upwards of
1000ns.

3.4.3 Results

• Mean: 1.31 µs

• Standard Deviation: 0.045 µs

Base hardware performance -
Estimate of software overhead 1+
Prediction of operation time 1+
Measured operation time 1.31

Table 11: System Call Overhead (microseconds)

3.4.4 Analysis

Our estimate was right. System calls are costly owing from
the need for the processor to switch between these two distinct
privilege levels, involving a change in execution mode and a
switch in memory context. Comparing them with procedure
call, procedure calls are lightweight operations within a pro-
gram, taking only a few nanoseconds even with arguments.
System calls, on the other hand, are heavyweight interactions
with the operating system. System calls are almost 1000x
slower than a procedure call with no arguments!
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3.5 Task Creation

Process creation refers to the time required to fork a child
process from a parent. It includes tasks such as duplicating
the parent’s address space, file descriptors, and other process-
related attributes. The fork system call creates a nearly iden-
tical copy of the parent process, resulting in relatively higher
overhead compared to thread creation. Thread creation in-
volves tasks like allocating a new thread control block, initial-
izing the thread’s data structures, and setting up its stack.

3.5.1 Methodology

To measure process creation, we employed the fork sys-
tem call, which creates a duplicate of the existing process.
We read the time counter before and after each fork call
to determine the time it took for each fork operation. For
thread creation, we utilized the pthread_create function
from the pthread library. Like with process creation, we
calculated the difference between time counters before and af-
ter pthread_create to measure the time consumed by each
thread creation. Both, the child process and child thread con-
tained no code to ensure that the measurements were not
affected by additional factors.

3.5.2 Estimates

No earlier experiments allow us to make an educated guess
about running time to create a process or a thread. However,
relying on an observation in the Plan 9 operating system about
a fork being nearly 200 times as long as a system call, we
estimate process creation to take about 200 µs [15].

Creating a thread is generally less resource-intensive than
creating a new process since threads within the same pro-
cess share the same memory space and resources. So thread
creation should take significantly lower time than process
creation. We estimate it to take 1/10th of the process creation
time.

3.5.3 Results

Process

• Mean: 567.67µs

• Standard Deviation: 27.64µs

Base hardware performance -
Estimate of software overhead 200
Prediction of operation time 200
Measured operation time 567.67

Table 12: Process Creation (microseconds)

Thread

• Mean: 122.87µs

• Standard Deviation: 2.98µs

Base hardware performance -
Estimate of software overhead 20
Prediction of operation time 20
Measured operation time 122.87

Table 13: Thread Creation (microseconds)

3.5.4 Analysis

Our findings revealed that process creation is considerably
more time-consuming than thread creation, by a factor of 4.
When using the fork system call, the operating system has to
duplicate a substantial amount of data to create a new process.

In contrast, when it comes to thread creation, the operating
system does not need to replicate all the data from the calling
thread. This is because the caller and the new thread will share
the same memory address space. This sharing of resources
saves a significant amount of time. Additionally, the operating
system may recycle threads.

3.6 Context Switch
Context switch time is the time needed to save the state of one
process/thread and restore the state of another process/thread.

3.6.1 Methodology

To measure the time it takes for a context switch to occur, we
devised a method using pipes to reliably switch between a
parent process or thread and its child, and vice versa. In this
method, the parent process writes to the first pipe and waits
for a read on the second pipe. When the OS detects the first
process waiting for data on the second pipe, it puts the first
process in a blocked state and switches to the other process.
This second process reads from the first pipe and then writes
to the second pipe. When the second process attempts to read
from the first pipe, it also blocks, leading to a continuous back-
and-forth communication cycle. By repeatedly measuring
the cost of this communication pattern, we can estimate the
context switch time accurately. The result needs to be divided
by two since what we measure is essentially two context
switches.

3.6.2 Estimates

Based on the provided estimates from [3], a context switch
can cost at least 30 µs of CPU overhead. We used this number
as an estimate for the thread context switch. A process context
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switch should be several times longer than a thread context
switch. Thus, we estimate the process context switch to be 3
times longer, which amounts to 90 µs.

3.6.3 Results

Process

• Mean: 78.43 µs

• Standard Deviation: 0.90 µs

Base hardware performance -
Estimate of software overhead 90
Prediction of operation time 90
Measured operation time 78.43

Table 14: Process Context Switch (microseconds)

Thread

• Mean: 41.46 µs

• Standard Deviation: 0.19 µs

Base hardware performance -
Estimate of software overhead 30
Prediction of operation time 30
Measured operation time 41.46

Table 15: Thread Context Switch (microseconds)

3.6.4 Analysis

These findings indicate that the time taken for context switch-
ing between processes and threads falls within 10 to 100 mi-
croseconds. Although this time is less than what is required
for creating a new process or thread, the overhead involved in
context switching remains significant in today’s computing
contexts.

4 Memory

4.1 Memory Access Time
Memory access time refers to the time it takes for a CPU
to retrieve data from a specific location in the computer’s
memory hierarchy (L1, L2, L3 cache and main memory). The
memory access time is affected by various factors, including
the type of memory technology used (e.g., DDR4 RAM),
the distance between the CPU and the memory module, the
module’s latency, and the efficiency of the memory controller.

4.1.1 Methodology

Following the methodology proposed in lmbench [9] for mea-
suring average memory access time, we read repeated refer-
ences to integer arrays of varying sizes using multiple strides.
The stride, representing the distance between consecutive el-
ements during array traversal, was updated to observe the
influence of spatial locality on memory access. In this con-
text, memory size denotes the total allocated memory, with
larger sizes potentially leading to increased cache misses and
impacting memory traversal efficiency.

For each combination of stride size and memory size, we
allocated memory, created an integer array with specified links
between elements based on the chosen stride, and traversed
the array in a loop for one million iterations. We aimed to
minimize the impact of cache line sizes and memory pre-
fetching on the measurements. We intend to measure the back-
to-back-load time, representing the time each load operation
takes, assuming that the instructions before and after are also
cache-missing loads.

4.1.2 Estimates

Based on the provided estimates from [18], we estimate the
different components of the hierarchy to be in the range high-
lighted in Table 16.

Level Access Time Typical Size
L1 (on-chip) 2-8 ns 8 KB - 128 KB
L2 (off-chip) 5-12 ns 0.25 MB - 8 MB
L3 (off-chip) 12-30 ns 4 MB - 32 MB
Main Memory 10-60 ns 64 MB - 16 GB

Table 16: Estimated Memory Access Time

4.1.3 Results

Level Access Time
L1 3.41
L2 6.29
L3 10.63
Main memory 14.80

Table 17: Memory Access Time (nanoseconds)

4.1.4 Analysis

Each data set represents a stride size, with the array size
varying from 256 KB (28 bytes) up to 1 GB (230 bytes). The
graph contains four horizontal plateaus, where each plateau
represents a level in the memory hierarchy from L1 to main
memory. The point where each plateau ends and the line rises
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Figure 2: Memory Access Time

marks the end of that portion of the memory hierarchy. There
is a rise in latency between different hierarchies because each
higher level cache is likely to be further away from the CPU,
shared between multiple cores (L1 vs L2) and using a different
technology (e.g. SRAM, DRAM). Thus, when the array size
exceeds the size limit of the current cache level, the excess
data will be stored in the next cache level. This explains the
increasing trend in the latency with sudden increases marking
the end of current cache level and beginning of the next one.

The three vertical lines correspond to the size of L1, L2
and L3 cache, which are 32 KB, 256 KB, and 6 MB respec-
tively. This observation matches exactly with our machine
specification listed in Table 1.

4.2 Memory Bandwidth
Memory bandwidth refers to the rate at which data can be
read from or written to the RAM. Several factors influence
memory bandwidth, including the type of RAM (e.g., DDR4,
DDR5), the memory bus speed, the width of the memory bus,
and the overall memory architecture of the computer system.

4.2.1 Methodology

To profile memory bandwidth, we adopted the approach out-
lined in the lmbench paper [9]. To saturate memory band-
width, we prepared an integer array approximately six times
the size of the L3 cache. We then sequentially accessed the
array elements, with a 64-byte stride. The stride was chosen
such that it exceeded the cache line size, thus preventing cache
hits to ensure accurate measurements. To minimize loop over-
head and reduce branch instructions, the loop was manually
unrolled 28 times. The first element in each cache line was
utilized for the read/write operation, mitigating the impact of
cache line pre-fetching.

For measuring read bandwidth, the values of the first el-
ements of each cache line in the large integer array were
summed. Similarly, to measure write bandwidth, a constant
value was stored in the first element of each cache line in the
array.

4.2.2 Estimates

According to the codearcana blog post [16], Bandwidth =
DRAM Clock Frequency * Memory Bus Width * Number
of lines. For our testing machine’s DDR4 memory, we have
clock frequency = 1066MHz, 2 lines and 64bits wide memory
bus. Using these numbers we can calculate the test machine’s
memory bandwidth as 1066Mhz * 64 / 8 * 2 = 17.06 GB/s.
However, this is the theoretical bandwidth and we estimate
the real bandwidth to be much lower, somewhere around 25%
of the theoretical bandwidth.

We expected the write bandwidth to be roughly half of the
read bandwidth due to the cache read and write policies, where
a cache line is read into the cache before a modified value
is written back to memory. This anticipation arises from the
increased memory traffic and potential obfuscation of memory
write test results caused by accessing the system cache and
reading memory into the cache during write operations.

4.2.3 Results

Memory Read Bandwidth

• Mean: 3.59 GB/s

• Standard Deviation: 69.62 MB/s

Memory Write Bandwidth

• Mean: 1.88 GB/s

• Standard Deviation: 20.11 MB/s

Base hardware performance 17.06
Estimate of software overhead 75%
Prediction of operation time 4.26
Measured operation time (Read) 3.59
Measured operation time (Write) 1.88

Table 18: Memory Bandwidth (in GB/s)

4.2.4 Analysis

In our experiments, standard loop read and write operations
consistently yielded a bandwidth significantly below the theo-
retical maximum, attributing this to the impact of cache read
and write policies. Notably, modern CPUs, during write opera-
tions involving data sizes below the cache line size (64 bytes),

7



necessitate reading the entire cache line from main memory,
modifying it, and subsequently writing it back. This dual read
and write process during a seemingly write-focused operation
resulted in a significantly lower than expected bandwidth.

This discrepancy aligns with findings by Alex Reece [16],
who highlighted challenges in saturating entire memory
bandwidth with a single-threaded program on a single core.
Reece achieved higher bandwidth using OpenMP and mul-
tiple threads across multiple cores, emphasizing the poten-
tial for increased efficiency. While our study did not explore
multi-threaded approaches, the observed bandwidth reflects
the complexities of fully utilizing memory bandwidth with a
single-threaded program.

4.3 Page Fault Service Time

Page fault service time represents the time it takes to handle a
page fault. A page fault occurs when a program attempts to
access a page of virtual memory that is not currently in the
physical RAM. A page fault involves the operating system
interrupting the CPU, identifying the required page not in
physical RAM, initiating disk I/O to fetch the page, potentially
replacing a page in RAM if needed, and updating page tables
to reflect the new mapping.

4.3.1 Methodology

We triggered page faults by reading one byte from the
initial page of newly mapped pages since mmap() per-
forms lazy file-reads. Notably, the first run consistently
produced significantly higher results, attributed to sys-
tem caching effects. To address this, we executed the
sudo sh -c "echo 3 > /proc/sys/vm/drop_caches" com-
mand before each test to clear the cache, ensuring a more
consistent and reliable evaluation of page fault metrics.

4.3.2 Estimates

On a major page fault, the operating system needs to bring
the required page into the RAM from the secondary storage
(usually a hard disk or SSD). Hard disk drives have an average
rotational latency of 3 ms, a seek time of 5 ms, and a transfer
time of 0.05 ms/page. The software overhead is negligible
compared to the hardware overhead. Therefore, we estimate
the total time for paging to take approximately 8 ms.

4.3.3 Results

• Mean: 8.21 ms

• Standard Deviation: 0.14 ms

Base hardware performance 8.05
Estimate of software overhead 0.05
Prediction of operation time 8.10
Measured operation time 8.213

Table 19: Page Fault Service Time (milliseconds)

4.3.4 Analysis

The experiment closely matches our estimate. This enunciates
the relatively slow nature of page fault handling, making it
a noteworthy factor to consider in applications where mini-
mizing access times is crucial. Dividing the page fault service
time by the size of page, we get 8213838/4096 = 2005 ns per
byte. Comparing with main memory access time for a byte
(14.80 ns), page fault service time per byte is 2005/14.80 =
135x the memory access time for a single byte!

5 Network

We used a MacBook Pro laptop as our remote test machine in
experiments which required a remote setup. Table 20 lists the
technical specifications of this machine.

Specification Apple M1 Pro
Frequency (performance
cores)

3228 MHz

Frequency (efficiency cores) 2064 MHz
Number of cores 8
Threads per core 2
Core speed 1994.6 MHz
L1 Data Cache (per core) 192 KB
L1 Instruction Cache (per
core)

128 KB

L2 Cache 24 MB
L3 Cache 24 MB
Memory Size 16 GB
Memory type LPDDR5
Max bandwidth 200 GB/s
Network Bands 2.4, 5 GHz
Maximum network speed 1200 Mbps
Wifi 802.11ax Wi-Fi 6
Disk Name APPLE SSD

AP0512R
Disk Type SSD
Disk Capactity 494.38 GB
Disk Bus Type PCIe
Operating System macOS Monterey
OS Version 12.04

Table 20: Remote Machine Specifications
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5.1 Round Trip Time
Round Trip Time (RTT) refers to the total time taken for a
signal or packet to travel from a source to a destination and
back again.

5.1.1 Methodology

The client initiates a TCP connection with the server, trans-
mitting a fixed-size message in a ping-pong fashion. The time
elapsed between sending the data and receiving an acknowl-
edgment is recorded for each iteration over a set number of
repetitions. Both the client and server programs are designed
to simulate both loopback and remote connections. For loop-
back, both processes run on the same machine, while for
remote, the server operates on a separate machine within the
same wireless network.

The experiments involve 10 repetitions. We utilize a prede-
fined message size, specifically a 44-byte message, to mimic
the typical data size in a ping packet after accounting for
headers. The TCP connection logic involves socket creation,
server address setup, connection establishment, and iterative
ping-pong exchanges. The server runs indefinitely, simulating
a continuous communication scenario.

5.1.2 Estimates

Given the simplicity of the round trip time (RTT) estimation
process and the comparable nature of ping time, we expect
both metrics to be on the same order. In the context of a
time-varying network environment, it’s challenging to predict
which one will be larger, but we anticipate their magnitudes to
align closely. Additionally, the straightforward nature of this
operation suggests that software overhead can be considered
negligible.

Considering the nature of round trip time (RTT), the loop-
back interface, being a virtual network interface with no phys-
ical network involvement, is expected to have minimal hard-
ware overhead. Given this, a reasonable estimate for loopback
RTT is around 0.1 ms.

For the remote interface, involving data transmission
through the network card, routers, and server network card,
the ideal RTT is influenced by the link speed of the WIFI net-
work, approximately 800 Mb/s. While the theoretical RTT for
transferring 64 bytes data one way is under 0.1 ms, practical
considerations suggest an estimate between 1 and 10 ms. The
additional latency is primarily attributed to router lookup and
packet forwarding in the network, contributing to the overall
round trip time.

5.1.3 Results

Loopback Interface

• Mean: 0.062 ms

• Standard Deviation: 0.002 ms

Base hardware performance ≈ 0
Estimate of software overhead 0.1
Prediction of operation time 0.1
Measured operation time 0.062

Table 21: Round Trip Time for Loopback Interface (millisec-
onds)

Remote Interface

• Mean: 4.48 ms

• Standard Deviation: 0.11 ms

Base hardware performance 1-10
Estimate of software overhead ≈ 0
Prediction of operation time 1-10
Measured operation time 4.48

Table 22: Round Trip Time for Remote Interface (millisec-
onds)

5.1.4 Analysis

The round trip time we get here is comparable to the ping
time. Thus, we believe our result is acceptable.

When analyzing the data from both remote and loopback
interfaces, it becomes apparent that the overhead from the op-
erating system’s network code is relatively minor, especially
when compared to the usual network latency. The loopback
interface exhibits a round-trip time (RTT) of 0.062 ms, which
serves as a reasonable proxy for the OS overhead, considering
that the data packet merely travels down and then back up the
network stack without any actual transmission. In contrast, the
RTT observed on the remote interface is 4.48 ms, attributed
to the Local Area Network’s characteristics. However, for
typical RTT over the internet, latencies ranging from 100ms
to 1s are quite common.

The study referenced in [7] notes that the bidirectional ping
latency for two machines connected via Wi-Fi on the same
route typically ranges between 4-5 ms. This figure aligns well
with the round-trip time (RTT) we observed for the remote
interface in our tests.

5.2 Peak Bandwidth
Peak bandwidth refers to the maximum data transfer rate
or capacity that a communication channel or network can
achieve under ideal conditions. It is typically expressed in
bits per second (bps) and serves as a theoretical upper limit,
often determined by the protocols and hardware components
involved in the network infrastructure.
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5.2.1 Methodology

We measure peak bandwidth through a custom client-server
setup. The client initiates a TCP connection with the server,
and the server sends a large message in a loop to simulate
continuous data transfer. We record the time taken for the
client to receive the entire message. The chosen message size
(1 MB) and repetition count (10,240) stress-test the network.
Bandwidth, expressed in megabytes per second, is derived by
dividing the total bytes by the total time.

5.2.2 Estimates

To estimate peak bandwidth, we can leverage the maximum
TCP window size divided by the round-trip time (RTT) for
the given path [19]. In the case of the loopback interface, with
an average RTT of 0.062 ms and a TCP window size of 64
KB, the calculated predicted peak bandwidth is approximately
1032.25 MB/s.

For remote interface, we estimated the bandwidth based on
the theoretical max bandwidth of our network link. We ran
our experiment using a LAN and our machine theoretical max
bandwidth is 867 Mbps = 108.37 MB/s.

For software overhead, we estimate it to be around 50%.
Thus, the final predicted bandwidth is only a half of the base
hardware performance.

5.2.3 Results

Loopback Interface

• Mean: 438.71 MB/s

• Standard Deviation: 8.16 MB/s

Base hardware performance 1032.25
Estimate of software overhead 50%
Prediction of operation time 516.12
Measured operation time 438.71

Table 23: Peak Bandwidth for Loopback Interface (MB/s)

Remote Interface

• Mean: 28.18 MB/s

• Standard Deviation: 0.34 MB/s

Base hardware performance 108.37
Estimate of software overhead 50%
Prediction of operation time 54.18
Measured operation time 28.18

Table 24: Peak Bandwidth for Remote Interface (MB/s)

5.2.4 Analysis

In our experiment, we utilized two laptops linked to the same
Local Area Network (LAN). Several factors might explain
why we were unable to reach the theoretical maximum band-
width. One such factor could be the router’s processing capac-
ity. Despite its higher theoretical bandwidth limit, the router’s
CPU might act as a limiting factor. Additionally, during our
tests, the router was simultaneously being used by others to
access the internet, which would have consumed a portion of
the available bandwidth.

Upon comparing outcomes from both the remote and loop-
back interfaces, it’s evident that the operating system’s net-
work code overhead is considerably less impactful than the
time required to transmit data packets over a real network con-
nection. In remote scenarios, the primary constraints are often
the physical network cards of the machines or the network
links themselves. The bandwidth observed for the loopback
interface, at 438.71 MB/s, offers a benchmark for the network
code’s capacity to process and construct network packets.
However, typical internet network bandwidths may be lower,
often due to congestion from multiple users sharing the same
network.

The theoretical maximum bandwidth for our machine’s
network card is 867 Mbps, which translates to 108.37 MB/s.
When compared to our findings, it’s clear that we aren’t fully
utilizing the network link. This discrepancy between theoreti-
cal and actual performance is common and can be attributed
to several factors, including network overheads and quality
and age of the network card and other network hardwares
used in the experiment too.

5.3 Connection Overhead
TCP is a reliable, connection-oriented protocol that ensures
data integrity and delivery by establishing a virtual connection
between the sender and receiver. Connection overhead during
setup involves a three-way handshake (the exchange of SYN,
SYN-ACK, and ACK packets) between the client and server to
establish a TCP connection, introducing latency and utilizing
additional network resources. During teardown, it involves a
four-way handshake to gracefully terminate the connection.

5.3.1 Methodology

To assess connection overhead, we measure the time taken
by the connect() and close() function calls, without the
actual data transfer being necessary in this test, and we iterate
this process 100 times for comprehensive analysis.

5.3.2 Estimates

In evaluating the overhead for setting up a connection, we
only measured the time taken by connect() calls. This mea-
surement ends when the client acknowledges the SYN-ACK
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message from the server, resulting in the termination of the
function call. The time it takes for the server to acknowledge
this message was not included in our measurement. As a
result, we believe that our calculations represent one Round-
Trip Time (RTT). From our previous experiments, we have
deduced that the setup time for a loopback interface is approx-
imately 0.062 ms, and for a remote interface, it is around 4.48
ms.

For connection teardown overhead, client only needs to
send FIN message to the server and does not need to wait
for any reply from the server. Therefore, our estimation of
the teardown time is primarily derived from the software
overhead, which we approximate to be about 0.01 ms.

5.3.3 Results

Loopback Interface

• Mean: 39 µs

• Standard Deviation: 1 µs

Setup Teardown
Base hardware performance 62 0
Estimate of software overhead 10 10
Prediction of operation time 72 10
Measured operation time 28 11

Table 25: Connection Overhead for Loopback Interface (mi-
croseconds)

Remote Interface

• Mean: 7.061 ms

• Standard Deviation: 0.154 ms

Setup Teardown
Base hardware performance 4.48 0
Estimate of software overhead 0.01 0.01
Prediction of operation time 4.49 0.01
Measured operation time 6.99 0.06

Table 26: Connection Overhead for Remote Interface (mil-
liseconds)

5.3.4 Analysis

Analyzing the results from both remote and loopback inter-
faces reveals that the operating system’s network code over-
head is relatively minor compared to the time required for
sending SYN or FIN packets to the server. In a remote setup,
the latency closely mirrors the round-trip time. On the other

hand, the loopback setup shows that the time taken to estab-
lish a connection on the loopback interface, at 0.028 ms, can
serve as a good estimate for the duration the OS takes to
set up a new socket for the client’s connection. During the
teardown phase, the timings are more aligned in both scenar-
ios, as there’s no waiting involved for a response in either
measurement.

Regarding the outcomes observed with the remote inter-
face, we must consider the extra overhead associated with
data transmission. Additionally, variations in network traffic
at the time of our experiments could account for some differ-
ences in the results. Despite these potential discrepancies, the
outcomes and our estimates are roughly within the same or-
der of magnitude, suggesting that our findings are reasonably
reliable.

6 File System

6.1 Size of File Cache

A file cache is used to store frequently accessed data from
the file system in memory, reducing the need to repeatedly
read from or write to the slower storage devices (such as hard
drives or SSDs). The size of the file cache is dynamically
managed by the operating system based on factors like avail-
able system memory, the demand for other processes, and the
access patterns of different files.

6.1.1 Methodology

In this experiment, we aim to measure the system’s maximum
file cache size by reading the same large file at varying lengths
to investigate the file cache effect. Initially, we read the ex-
perimental file, placing it into the main memory. Subsequent
reads of data blocks from the same file benefit from the file
being cached in memory, resulting in faster read times—a
demonstration of the file cache effect.

However, when the file size surpasses the maximum file
cache limitation, the entire file cannot fit into main memory.
Subsequent reads lead to cache misses, requiring retrieval
from the disk and significantly increasing data block read
times. This abrupt change indicates that the experimenting
file size equals or exceeds the file cache size for the testing
machine. To pinpoint the precise maximum file cache bound-
aries, we iteratively decrease the file size.

The experimental setup involves measuring the maximum
file cache size by reading data ranging from 1GB to 6GB file.
Each experiment starts with an initial read to ensure the file’s
data is in main memory. Subsequently, we perform another
read of the same file, calculating the average reading time
per data block. We read the file backward instead of from the
beginning. This decision is made to prevent the prefetching of
disk blocks and to better isolate the impact of the file cache.
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Figure 3: Size of File Cache

6.1.2 Estimates

Taking into account the 8GB main memory on the testing
machine running Ubuntu, we can estimate the maximum file
cache size by subtracting the memory space consumed by
essential OS processes. Referring to the System Monitor on
Ubuntu, it’s observed that around 2GB is utilized by the OS
and other user-level processes, along with approximately 1GB
each for wired memory and compressed memory. This deduc-
tion leads to an approximation of an available file cache size
in the range of 5-6GB. This estimation relies on the under-
standing that any unused RAM can potentially be allocated
for file caching in the Ubuntu environment.

6.1.3 Results

Base hardware performance 8
Estimate of software overhead 2-3
Prediction of operation time 5-6
Measured operation time 5.2-5.3

Table 27: Size of File Cache (GB)

6.1.4 Analysis

The experimental results indicate a file cache size of approxi-
mately 5.2GB to 5.3GB. The methodology successfully iden-
tified a transition point around 5GB, distinguishing between
file cache and disk reading. This provides a reasonable esti-
mate of file cache boundaries with a clear change in reading
times.

6.2 File Read Time
File read time refers to the duration it takes to access and re-
trieve data from a file stored on a storage device. It is typically
influenced by factors such as storage device speed, file size,
access patterns, and the efficiency of file and I/O subsystem
implementations.

6.2.1 Methodology

The methodology involves configuring file access with spe-
cific flags, allocating buffers, setting up timing mechanisms,
and implementing sequential and random access patterns. Se-
quential access entails reading the file block by block. Ran-
dom access involves generating random offsets within the
file and reading blocks at those offsets. The O_DIRECT flag
ensures direct I/O by bypassing the file system cache, while
O_SYNC guarantees synchronous operations, requiring data
and metadata updates to be written to the storage device be-
fore system calls are considered complete. Data is collected by
recording time per read operation, calculating average times.
We close the file descriptor and free allocated resources for
cleanup. To avoid any kind of file cache effects across runs,
we created a new test file for every run.

6.2.2 Estimates

On average, disks take 0.85 ms to read 1 MB of data sequen-
tially [17]. For our disk described in Table 5, the average
latency measures the average time it takes for the disk to ac-
cess a random piece of data on the platter, which is 4.2 ms
in our case. It is a good estimate for the random read time.
Since sequential is always faster, we estimate it to be 10x as
fast as reading data randomly. Our estimate for sequential file
access is 0.42 ms. Also, an important point often missed is "se-
quential" file access, although implying linear reading from
start to end, can be influenced by factors like disk fragmen-
tation, degrading performance. File system characteristics,
and hardware buffers may make sequential reads seem more
efficient.

6.2.3 Results

Sequential

• Mean: 0.212 ms

• Standard Deviation: 0.012 ms

Base hardware performance 0.42
Estimate of software overhead -
Prediction of operation time 0.42
Measured operation time 0.21

Table 28: File Read Time for Sequential Access (milliseconds)
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Random

• Mean: 4.935 ms

• Standard Deviation: 0.149 ms

Base hardware performance 4.20
Estimate of software overhead -
Prediction of operation time 4.20
Measured operation time 4.935

Table 29: File Read Time for Random Access (milliseconds)

Figure 4: File Read Time

6.2.4 Analysis

For sequential access, the stable and consistent time mea-
surements across various file sizes highlight the efficiency of
HDDs in handling sequential data retrieval. The low deviation
further supports the reliability of this methodology, showcas-
ing the consistent nature of sequential reads on HDDs.

In the case of random access, the higher and stable time
values compared to sequential access are a characteristic of
HDD behavior. HDDs are inherently slower in responding
to random access requests due to mechanical components,
seek times, and potential file fragmentation. The absence of
prefetching advantages in random access contribute to the
observed higher time values.

6.3 Remote File Read Time

We measure and analyze the average per-block time for se-
quential and random file reads of various sizes on a remote
file system to assess the network penalty. The exact impact of
the network penalty depends on factors such as the network
speed, latency, and the efficiency of the file transfer protocol.

6.3.1 Methodology

In our experiment, we utilized a MacBook Pro laptop as the
remote test machine, which is connected to the same Local
Area Network (LAN). Detailed specifications of this machine
are provided in Table 20.

We configured an NFS server on the remote test machine, as
outlined in [1], and subsequently mounted the shared directory
on our main machine following the guidelines in [8].

However, there are notable differences to be considered:

• The remote test machine is equipped with an SSD,
whereas our main machine utilizes an HDD.

• The NFS operates with a larger block size of 1MB, which
could significantly affect transmission latency.

To ensure accuracy in our measurements, we cleared the file
cache on both the client and server machines before each test
to prevent the influence of cached data.

For assessing the network penalty, we compared the aver-
age time taken per block for sequential local file reads (per-
formed on the same machine) with the average time per block
for sequential remote file reads.

6.3.2 Estimates

We approximated that the read latency on our remote test
machine, which utilizes an SSD, would be nearly identical to
the sequential read time on our primary test machine. Conse-
quently, our focus shifted to calculating the network penalty.

Our assessment identifies two principal factors contribut-
ing to the network penalty: the round-trip time and the data
transmission time. Based on earlier network tests, we esti-
mated the round-trip time at 4.48 ms. For the transmission
time, we calculated it as 1MB (the NFS block size) divided
by 28 MB/s, resulting in 35.71 ms. Therefore, we estimated
the total network penalty to be 4.48 ms + 35.71 ms = 40.19
ms.

The total estimated time amounts to 0.21 ms + 40.19 ms =
40.4 ms. This estimation holds for both sequential and random
access, as the use of SSDs eliminates any distinction between
the two.

6.3.3 Results

Sequential

• Mean: 49.155 ms

• Standard Deviation: 3.449 ms

Random

• Mean: 49.843 ms

• Standard Deviation: 1.434 ms
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Base hardware performance 40.4
Estimate of software overhead ≈ 0
Prediction of operation time 40.4
Measured operation time 49.1

Table 30: Remote File Read Time for Sequential Access (mil-
liseconds)

Base hardware performance 40.4
Estimate of software overhead ≈ 0
Prediction of operation time 40.4
Measured operation time 49.8

Table 31: Remote File Read Time for Random Access (mil-
liseconds)

Figure 5: Remote File Read Time

6.3.4 Analysis

The observed times for sequential and remote reads are re-
markably similar, aligning with the fact that the remote test
machine employs an SSD, resulting in negligible disparity
between sequential and remote reads.

To determine the network penalty, we deducted the aver-
age time for sequential file reading of remote files from the
average time for sequential file reads locally. This calculation
revealed a network penalty of 49.155 ms - 0.21 ms = 48.943
ms.

The calculated network penalty aligns with our initial esti-
mate. The slight variation can likely be ascribed to changes
in network traffic and the extra processing time as packets
navigate through the network stack.

6.4 Contention

Contention refers to the competition for shared resources
among concurrent processes or threads, often leading to in-
terference and performance degradation. We measure and
analyze the average time to read one file system block of
data as the number of simultaneous processes performing the
same operation on different files on the same disk increases,
excluding the impact of the file buffer cache.

6.4.1 Methodology

To conduct this experiment, multiple processes simultane-
ously read distinct 64MB files on the same disk. Each process
reads a different file. Similar to the previous experiment, the
file caching is bypassed by setting O_DIRECT | O_SYNC flags.
The experiment measures file block read times against the
number of concurrently reading processes for both sequential
and random reads.

6.4.2 Estimates

As contention rises, wait times may increase. In the case of
random reads, which involve non-sequential access patterns,
contention is likely to lead to more significant increases in
disk seek times. Since contention degrades performance, we
expect the sequential and random access time to read one
file system block of data to be much worse than when read
without contention. For 10 processes, we estimate the latency
with contention to be approximately 10x the sequential access
and random access latency for reading a file, i.e. 2.1 ms and
49.3 ms respectively.

6.4.3 Results

The following results are for contention between 10 processes.
Sequential

• Mean: 4.50 ms

• Standard Deviation: 0.52 ms

Base hardware performance 2.10
Estimate of software overhead -
Prediction of operation time 2.10
Measured operation time 4.50

Table 32: Contention for Sequential Access (milliseconds)

Random

• Mean: 26.61 ms

• Standard Deviation: 0.89 ms
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Figure 6: Contention

Base hardware performance 49.3
Estimate of software overhead -
Prediction of operation time 49.3
Measured operation time 26.61

Table 33: Contention for Random Access (milliseconds)

6.4.4 Analysis

When examining sequential access results, the file block ac-
cess time increases as the number of simultaneous read op-
erations grows. This is attributed to the diminishing effect of
prefetching as more processes are introduced. In scenarios
with a single process, prefetching is effective as data blocks
can be stored in main memory. However, as processes reading
different files increase, newly read data blocks may replace
those read by previous processes, undermining prefetching
efficiency. Consequently, a stable reading time is observed
after a certain point as the diminishing impact of prefetching
becomes apparent.

For random access, as the number of processes increases,
random access time gradually rises. Disk controller can also
reorder read requests for efficiency, which might improve the
performance slightly as seen in the graph for a few data points.
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Section Operation Base Hardware
Performance

Estimated
Software

Overhead

Predicted Time Measured Time

CPU,
Scheduling,
and OS
Services

Measurement Overhead 3.85 ns 1.50 ns 5.35 ns 13.70 ns

Loop Overhead - 5.00 ns 5.00 ns 2.66 ns

Procedure Call (n args) - 0.38n+0.1 ns 0.38n+0.1 ns 0.244n+0.24 ns

System Call - 1 µs 1 µs 1.31 µs

Process Creation - 200 µs 200 µs 567.67 µs

Thread Creation - 20 µs 20 µs 122.87 µs

Process Context Switch - 90 µs 90 µs 78.43 µs

Thread Context Switch - 30 µs 30 µs 41.46 µs

Memory

L1 Access Time 2-8 ns - 2-8 ns 3.41 ns

L2 Access Time 5-12 ns - 5-12 ns 6.29 ns

L3 Access Time 12-30 ns - 12-30 ns 10.63 ns

Main Memory Access
Time

10-60 ns - 10-60 ns 14.80 ns

Read Bandwidth 17.06 GB/s 75% overhead 4.26 GB/s 3.59 GB/s

Write Bandwidth 17.06 GB/s 75% overhead 4.26 GB/s 1.88 GB/s

Page Fault Service 8.05 ms 0.05 ms 8.10 ms 8.21 ms

Network

Loopback Round Trip ≈ 0 0.1 ms 0.1 ms 0.06 ms

Remote Round Trip 1-10 ms ≈ 0 1-10 ms 4.48 ms

Loopback Bandwidth 1032 MB/s 50% overhead 516 MB/s 438 MB/s

Remote Bandwidth 108 MB/s 50% overhead 54 MB/s 28 MB/s

Loopback Connection
Overhead

62 µs 20 µs 80 µs 39 µs

Remote Connection
Overhead

4.48 ms 0.02 ms 4.5 ms 7.06 ms

File System

File Cache Size 8 GB 2-3 GB 5-6 GB 5.2 GB

Sequential File Read 0.42 ms - 0.42 ms 0.21 ms

Random File Read 4.2 ms - 4.2 ms 4.93 ms

Sequential Remote File
Read

40.4 ms ≈ 0 40.4 ms 49.15 ms

Random Remote File
Read

40.4 ms ≈ 0 40.4 ms 49.84 ms

Sequential Access Con-
tention (10 processes)

2.10 ms - 2.10 ms 4.50 ms

Random Access Con-
tention (10 processes)

49.30 ms - 49.30 ms 26.61 ms

Table 34: Summary
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