
Nerdle
Like Wordle, but for nerds

Mayank Jain (A59024762)

Jonathan Mulyawan Woenardi (A59023890)

Jash Gautam Makhija (A59025270)

Shashi Dhanasekar (A59024717)

Yudhir Gala (A59024802)

March 15, 2024



Nerdle CSE 202 (Winter 2024)

Contents

1 Introduction 2

2 How Nerdle is Played 3

2.1 Game Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Game Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Rules of Nerdle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Step-by-step Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 Game Walkthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Terminology 6

4 Computing the list of valid mathematical equations for the solution 7

5 Evaluating the guess equation 14

6 Computing a set of valid mathematical equations given a guess 18

7 Data Structure to maintain the game state 23

7.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2 Naive Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.3 Optimized Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.4 Time Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Figuring the best equation the player can use as the next guess 34

9 Experiments 41

9.1 Time complexity for generating valid equations and expressions . . . . . . . . . . . 41

9.2 Time complexity for figuring the best equation . . . . . . . . . . . . . . . . . . . . . 42

9.3 Best starting equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Page 1



Nerdle CSE 202 (Winter 2024)

1 Introduction

Nerdle, accessible at nerdlegame.com, stands as a captivating daily math game designed to challenge

players with a penchant for logical thinking and mental arithmetic. With a limit of 6 attempts,

players embark on deducing an 8-digit mathematical equation, commencing with an initial guess

about the equation of the day.

Nerdle draws inspiration from the renowned word game Wordle, transforming it into a numerical

realm. Crafted by Richard Mann, a data scientist based in London, Nerdle offers a web-based

numeric puzzle where the objective is to unravel an 8-digit equation within a set number of attempts.

Feedback after each guess guides players, indicating correct positions, misplaced symbols, and absent

elements. Our project centers on solving this intricate 8-digit Nerdle puzzle.

Page 2



Nerdle CSE 202 (Winter 2024)

2 How Nerdle is Played

2.1 Game Objective

The primary aim is to find the solution using as few guesses as possible, guided by feedback hints

after each attempt. Correct elements are highlighted in green, and the challenge is to turn all tiles

green.

2.2 Game Layout

The layout comprises a game board for entering guesses and displaying feedback, along with a

keyboard for input. Nerdle equations adhere to specific rules, ensuring valid characters, correct

calculations, and consideration of order of operations.

2.3 Rules of Nerdle

• Eight characters compose the equation.

• Valid characters include: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘+’, ‘-’, ‘∗’, ‘/’, ‘=’.

• The character combination must form a mathematically correct equation with one “=”.

• The right side of ‘=’ must be a number, not a calculation.

• Order of operations: ‘∗’, ‘/’ before ‘+’, ‘-’.

• The solution excludes leading or lone zeros.

• The solution lacks a negative start number or a negative number after the equal sign, though

valid guesses may include these.

• The solution may contain the same character more than once.

Figure 1: Tile color possibilities

Page 3



Nerdle CSE 202 (Winter 2024)

2.4 Step-by-step Guide

• Initial Guess: Players begin the game by making an initial guess about the mathematical

equation.

• Feedback Hints: After each guess, players receive feedback hints to guide them towards the

correct solution. The hints are color-coded:

– Green = correct character, in the correct position.

– Purple = correct character, in the wrong position.

– Black = incorrect character or more of the same character in the question than the

answer (this is possible when there is duplicate characters in the guess or the solution).

To be precise about handling the duplicate letters, we will provide an example:

– Assume that there are 3 occurrences of ”1” in the solution (e.g solution = ”32-21=11”)

– There are 4 occurrences of ”1” in the guess (e.g guess = ”11+11=22”)

– The ”1” which in the correct position must be colored Green.

– Out of the other 3 occurences of ”1” in the guess, only 2 must be colored Purple because

there are in total only 3 ocurrences of ”1” in the solution (2 if we don’t count the one

whose position matches).

– Only the 2 left-most ”1” will be colored Purple.

• Deductive Strategy: Players use deduction with each guess to improve their daily scores. They

adjust their Nerdle strategy based on the feedback hints.

2.5 Game Walkthrough

1. In the initial attempt to solve the puzzle with the equation “48-36=12,” as seen in Figure 2,

feedback highlights that

• “=” and “1” are correctly positioned (colored green),

• “4,” “-”, and “6” are present but in the wrong positions (colored purple), and

• “8,” “2,” and “3” are not part of the equation (colored black).

2. With this feedback, the equation is narrowed down to “ = 1 .” Recognizing the

Page 4



Nerdle CSE 202 (Winter 2024)

Figure 2: Initial Guess

challenge in predicting the equation solely from the initial feedback, a subsequent guess is

made by excluding operators and numbers marked in black. For instance, testing the position

of the operator ”-”, it leads to the guess ”6∗4-9=15.”

3. This refined equation becomes “6 9= 1 ,” and leveraging feedback from the previous step,

the correct equation is deduced as “6-1+9=14.” The player’s strategic approach, demonstrated

in the accompanying figure 3, results in successfully unraveling the puzzle in just 3 attempts.

Figure 3: Solved Nerdle example

Page 5



Nerdle CSE 202 (Winter 2024)

3 Terminology

In this project, our goal is to tackle various computational problems associated with the Nerdle

game. These challenges will enable us to simulate the game and conduct a comprehensive analysis

of the various strategies one can use to solve the game most effectively.

In this section, we establish the terminology crucial for tackling computational challenges in the

Nerdle game.

1. Characters C are defined as the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,−,×,÷,=}. These characters

form the basic character set for mathematical equations.

2. An equation q is represented as a sequence c1, c2, c3, ...ck, where each ci is an element from the

character set C. The set Q consists of equations q.

3. The length of an equation q is denoted as k, representing the number of characters in the

equation.

4. A hint set H is defined as { EXACT MATCH, WRONG POSITION, WRONG CHARACTER }. Henceforth,

we shall use EM for EXACT MATCH, WP for WRONG POSITION, and WC for WRONG CHARACTER for

brevity.

5. A guess g is represented as [(c1, h1), (c2, h2), ...(ck, hk)], where each ci is an element from

C, and each hi is a hint from H. The set G consists of guesses g. For any guess g =

[(c1, h1), (c2, h2), ...(ck, hk)], [c1, c2, ..., ck] is called the equation part, while [h1, h2, ..., hk] is

called the feedback part.

Page 6



Nerdle CSE 202 (Winter 2024)

4 Computing the list of valid mathematical equations for

the solution

We want to generate a list of all possible mathematical equations. The solution will be selected

from this list.

Input

1. Character set C

Output

1. List of equations Qall where each equation q is c1, c2, ...ck where ci ∈ C.

Constraints

1. The equations must adhere to the rules of a valid mathematical equation.

(a) Each equation should have a single ‘=’.

(b) No leading zeroes.

(c) No consecutive operators.

(d) No operators at the start of the equation and in the RHS of the equation.

2. In addition to the equation following mathematical rules, we also impose constraints arising

from the behaviour of the game.

(a) The right-hand side (RHS) of the equation is limited to containing 1 to 3 digits. This

restriction aims to control the complexity of the expressions.

(b) Equations are constrained to exclude signed numerical values, ensuring that all numbers,

including the starting one, are non-signed.

Objective

1. Exhaustive search across the entire equation space.

Page 7



Nerdle CSE 202 (Winter 2024)

Algorithm

The algorithm uses complete search along with pruning and mathematical evaluation to generate

the set of valid equations of length 8. We have broken down the algorithm into multiple functions

for ease of understanding:

• generate valid equations: Generates all possible valid equations of length 8. Refer [1].

• generate expressions: Generates all possible expressions of given length. Refer [2].

• evaluate: Parses arithmetic expressions and computes the result. Refer [3].

• has leading zeroes: Checks for leading zeroes in the expression. Refer [4].

• operate: Performs a mathematical operation between two operands and operator. Refer [4].

Proof of Correctness

To prove our algorithm is correct, we need to prove the list of equations it returns contains all

the equations returned by a correct algorithm and does not contain any equations which are not

returned by the correct algorithm.

We will first proof that generate expressions returns all expressions using the characters. Using

proof by induction,

Base Case: For length 1, the function returns a list of single-digit expressions, which are valid as

they consist of characters from the character set and do not contain consecutive characters.

Inductive Step: Assuming the algorithm holds true for expressions of length t, we need to show

that for n = t + 1, generate expressions(t+1) generates all valid expressions of length t + 1.

Consider an expression of length (t+1) as two sub-expressions of lengths 1 and t. The expression of

length 1 acts as the starting character. Since generate expressions(t) returns all valid expres-

sions of length t, by combining these with the starting character, we ensure all possible expressions

of length (t+ 1) are generated. Combining two expressions, each representing sequences of charac-

ters, results in another sequence of characters. This satisfies the constraint of syntactic validity, as

each character in the expression remains separated by operators, ensuring no consecutive operators

are present.

Page 8



Nerdle CSE 202 (Winter 2024)

Thus, the generate expressions’s correctness is maintained as it effectively explores all valid

combinations of expressions while ensuring syntactic correctness at each step.

The outer loop of the algorithm iterates over expressions generated by generate expressions of

length 4 to 6. For each generated expression, it checks several conditions:

• It ensures that the expression doesn’t start with an operator.

• It checks for leading zeroes and skips such expressions.

• It evaluates the expression and verifies that the result is non-negative.

• It formats the expression as an equation and adds it to the list of valid equations only if its

length is 8 characters.

Total length of equation must be 8. Since RHS can be 1-3 digits long, and knowing the equal symbol

takes up 1 character, it leaves the LHS of the equation to be 4-6 characters long. By the inductive

hypothesis, we know that generate expressions correctly generates all valid expressions of length

up to t. Therefore, by iterating over expressions of length 4-6, and applying the aforementioned

conditions, the algorithm ensures that only valid equations of length 8 are included in the list of

valid equations.

Thus, we have shown that the generate valid equations algorithm correctly generates valid arith-

metic equations of length 8.

Time Complexity

A naive implementation would take O(158) time complexity, as each position can have 15 characters.

However, in our optimized algorithm, we utilize the constraints to prune the search space early on.

The ‘=’ character can either be at the 5th, 6th position or the 7th position. Also, we only generate

the LHS of the equation and evaluate the right-hand side; therefore, the outer loop ranges from 4

to 6 since the RHS can be either 1 to 3 digits long.

Time complexity for each of the functions is explained briefly below:

• generate valid equations: O(3 · |generate expressions(k)|) · O(k) (nested loops, followed

Page 9



Nerdle CSE 202 (Winter 2024)

Algorithm 1 Generate Valid Arithmetic Equations

1: procedure generate valid equations
2: valid equations← []
3: for length in [4, 5, 6] do
4: for expression in generate expressions(length) do
5: if not expression[0] isdigit() then
6: continue ▷ Skip expressions starting with an operator
7: end if
8:

9: if has leading zeroes(expression) then
10: continue ▷ Skip expressions having leading zeroes
11: end if
12:

13: result← evaluate(expression)
14: if result < 0 then
15: continue ▷ Skip expressions with negative RHS
16: end if
17:

18: formatted expression← expression + “ = ” + str(result)
19: if len(formatted expression) = 8 then ▷ Length of the string must be 8
20: valid equations.append(formatted expression)
21: end if
22: end for
23: end for
24: return valid equations
25: end procedure

Page 10



Nerdle CSE 202 (Winter 2024)

Algorithm 2 Generate Expressions of Fixed Length

1: cache← {}
2: digits← “0123456789”
3: operators← “−+/ ∗ ”
4: starting characters← digits + operators
5:

6: procedure generate expressions(length)
7: if length = 1 then
8: return [digit for digit in digits]
9: end if
10: if length in cache then
11: return cache[length]
12: end if
13: expressions← []
14: sub expressions← generate expressions(length− 1)
15: for start char in starting characters do
16: for sub expr in sub expressions do
17: if start char in operators and sub expr[0] in operators then
18: continue ▷ Rule out consecutive operators
19: else
20: expr← start char + sub expr ▷ Combine starting character and sub-expression
21: end if
22: expressions.append(expr)
23: end for
24: end for
25: cache[length]← expressions ▷ Cache the generated expression
26: return cache[length]
27: end procedure

Page 11



Nerdle CSE 202 (Winter 2024)

Algorithm 3 Evaluate an expression

1: procedure evaluate(expression) ▷ Parse arithmetic expressions and compute the result
2: numbers← []
3: operators← []
4: current number← 0 ▷ Variable to store current number
5: for char in expression do
6: if char.isdigit() then
7: current number← current number× 10 + int(char) ▷ Construct number
8: else
9: if current number then
10: numbers.append(current number)
11: current number← 0
12: end if
13: operators.append(char)
14: end if
15: end for
16:

17: if current number then
18: numbers.append(current number) ▷ Add last constructed number
19: end if
20:

21: if len(operators) = 0 then
22: return numbers[0] ▷ No operators, return the only number
23: end if
24:

25: if len(operators) = 1 then
26: return operate(numbers[0], numbers[1], operators[0]) ▷ Only one operator
27: end if
28:

29: if operators[1] in “*/”” and operators[0] in “+-” then
30: return operate(numbers[0], operate(numbers[1], numbers[2], operators[1]), operators[0])
31: else
32: return operate(operate(numbers[0], numbers[1], operators[0]), numbers[2], operators[1])
33: end if
34: end procedure

Page 12



Nerdle CSE 202 (Winter 2024)

Algorithm 4 Utilities

1: procedure has leading zeroes(expression) ▷ Check for leading zeroes
2: for idx, char in enumerate(expression) do
3: if idx = 0 and char = ”0” then
4: return True
5: else if char = ”0” and expression[idx− 1] in [“ + ”, “− ”, “/”, “ ∗ ”, “ = ”] then
6: return True
7: end if
8: end for
9: end procedure
10:

11: procedure operate(a, b, operator) ▷ Perform Mathematical Operation
12: if operator = “ ∗ ” then
13: return a ∗ b
14: else if operator = “ + ” then
15: return a+ b
16: else if operator = “− ” then
17: return a− b
18: else if operator = “/” then
19: return a/b
20: end if
21: end procedure

by operations for each iteration in nested loop) which simplifies to O(3 ·10 ·146 ·6) for max(k)

= 6. The actual search space is much smaller since we do not allow consecutive operators

and no leading zeroes, but we leave the exact calculation for later owing to the additional

complexity.

• generate expressions: O(10 · |C|length−1) . Recurrence relation is given by T (length) =

T (length−1)+O(10 · |C|length−1). After unfolding all terms, the constant term is the dominant

term and hence, also the final time complexity.

• has leading zeroes: O(k) where k is the length of the expression.

• evaluate: O(k) where k is the length of the expression.

• operate: O(1)

Thus, the final time complexity of generating all valid possible equations is of the order of O(10 ·

14k · k) where k is the length of LHS. A tighter bound can be established using permutations and

combinations to understand the total number of possible expressions.

Page 13



Nerdle CSE 202 (Winter 2024)

5 Evaluating the guess equation

In this problem, our focus is on evaluating the equation guessed by the player and return the hints

corresponding to each character of the guessed equation by comparing it with the correct equation.

Input

1. The current guessed equation q and let q = c1, c2, ..ck denotes the characters of the guessed

equation q where ci ∈ C.

2. The answer equation.

Output

1. Updated Guess g = [(c1, h1), (c2, h2), ...(ck, hk)] where ci ∈ C, hi ∈ H.

Constraints

1. Length of answer equation and length of guessed equation q must be equal to k.

2. For guess g = [(c1, h1), (c2, h2), ...(ck, hk)] , k is equal to the length of q.

3. ∀(ci, hi) ∈ g, the ith character of q = ci.

4. ∀(ci, hi) ∈ g, hi ∈ H.

Objective

To find the hints corresponding to each character of the guessed equation by comparing it with the

correct equation based on the rules explained in Section 2.4.

Algorithm

The algorithm evaluates a guessed equation for the game Nerdle based on a given answer. It returns

an updated guess with hints (EM, WP, or WC) for each character in the guess.

The algorithm initializes an empty list upd guess to store the updated guess. The algorithm counts

the occurrences of each character in the answer and stores it in the dictionary ans count. This

dictionary will be useful when the algorithm is evaluating the guessed equation for determining the

case of either WP or WC for a character in the guessed equation.

Page 14



Nerdle CSE 202 (Winter 2024)

Then, the algorithm iterates through each character in the guess equation. If the character in the

guess matches the corresponding character in the answer, it reduces the count of that character in

ans count. This indicates that the character has been correctly guessed.

Then for the evaluation of the guess, the algorithm iterates through each character in the guess

equation again.For each character, if the character matches the corresponding character in the

answer, it appends a tuple (character, EM) to upd guess, indicating an exact match. If the character

does not match the corresponding character in the answer and its count in ans count is zero, it means

that this character cannot be part of the answer. So, it appends a tuple (char, WC) to upd guess,

indicating a wrong character. If the character does not match the corresponding character in the

answer and its count in ans count is not zero, it means that this character appears in the answer but

in the wrong position. So, it appends a tuple (char, WP) to upd guess, indicating a wrong position.

It also reduces the count of that character in ans count. Finally, it returns the upd guess, which

contains the updated guess with hints for each character.

Page 15



Nerdle CSE 202 (Winter 2024)

Algorithm 5 Nerdle Evaluation Algorithm

1: function nerdle eval(ans, guess eq)
2: upd guess← empty list
3: ans count← {}
4: for c in ans do
5: ans count[c]← ans count[c] + 1 ▷ Count occurrences of each character in the answer
6: end for
7: for i in range(len(guess eq)) do
8: if guess eq[i] == ans[i] then
9: ans count[char]← ans count[char]− 1 ▷ Update count for exact matches
10: end if
11: end for
12: for i in range(len(guess eq)) do
13: if guess eq[i] == ans[i] then
14: upd guess.append((char, EM)) ▷ Exact Match
15: else if ans count[char] == 0 then
16: upd guess.append((char, WC)) ▷ Wrong Character
17: else
18: upd guess.append((char, WP)) ▷ Wrong Position
19: ans count[char]← ans count[char]− 1 ▷ Update count for wrong positions
20: end if
21: end for
22: return upd guess
23: end function

Correctness

For the evaluation of the guess, as the algorithm iterates through each character in the guess, it

correctly handles the case of EM for every exact match with the corresponding character in the

answer. According to the rules of the game Nerdle discussed before, if a particular character in

the guess exists in the answer, then the number of occurrences of that character with the hint

as either EM or WP should not exceed the number of occurrences of that character in the answer.

The algorithm initially decrements the count of every character in the answer where there is an

exact match with the guess before the assignment of hints to respective characters. By doing so,

the algorithm takes into account the number of occurrences of that character with the hint as EM,

ensuring the correct handling of the count of every character in the answer. Since the algorithm

is iterating from leftmost character to rightmost character of the guessed equation, if the number

of occurrences of a particular character in the guessed equation exceeds the number of occurrences

Page 16



Nerdle CSE 202 (Winter 2024)

of that character in the answer, the algorithm ensures that starting from the leftmost position of

that character in the guessed equation wherever there is not an exact match, it correctly handles

the case of WP before the case of WC as discussed in Section 2.4. In the case of WP, for a particular

character in the guess, the algorithm decrements the number of occurrences of that character in the

answer, thereby ensuring that the number of occurrences of that character with the hint as either

EM or WP does not exceed the number of occurrences of that character in the answer. Therefore, the

algorithm correctly handles the cases of WP and WC.

Time Complexity

The time complexity of the provided nerdle evaluation algorithm can be analysed stepwise-

• Converting the answer string to a list and creating a dictionary to store the count of each

character in the answer takes O(k) time, where k is the length of the equation.

• In the first loop, it iterates through each character in the guess and checks if it matches the

corresponding character in the answer. This takes O(k) time.

• The second loop also iterates through each character in the guess and performs constant-time

operations such as comparisons and dictionary lookups. This loop also takes O(k) time.

• Constructing and returning the upd guess list takes O(k) time since it involves iterating

through the equation that was guessed.

Overall, the time complexity of the algorithm is O(k), where k is the length of the equation and is

constant. As we consider k = 8 to be a fixed constant in this project, the time complexity of this

computation problem can be considered as O(1).

Page 17



Nerdle CSE 202 (Winter 2024)

6 Computing a set of valid mathematical equations given

a guess

As players, our task is to provide a mathematical equation as a guess. In this problem, our focus

is on generating a list of mathematical equations that remain possible as the solution, given all

previous constraints. We may also consider a ”harder” version of the game, where the next guess

must incorporate all existing clues that the player has already acquired.

Input

1. List of current valid equations Q such that Q ⊆ Qall.

2. Latest guess g = [(c1, h1), (c2, h2), ...(ck, hk)] where ci ∈ C, hi ∈ H.

Output

1. Updated list of equations Q′.

Constraints

For each equation in Q′, there are several constraints between the latest guess and the equation

based on the rules of the game.

There are two constraints related to the position of a character in the output equation, depending

on whether a hint is EM or not:

• A character with a hint of EM implies that there should be the same character in the exact

same position in the equation.

• A character with a hint not equal to EM implies that the same character should not be in the

exact same position in the equation.

There are two additional constraints that bound the number of occurrences of a particular character

in the output equation based on the existence of a WC hint:

• For a particular character c, if there is no hint of WC, then the number of occurrences of c in

the equation must be more than or equal to those in the guess.

• For a particular character c, if there is a hint of WC, then the number of occurrences of c in

Page 18



Nerdle CSE 202 (Winter 2024)

the equation must be equal to those with a hint not equal to WC in the guess.

Putting it mathematically,

1. Q′ ⊆ Qall

2. ∀(ci, hi) ∈ g if hi = EM then ∀q ∈ Q′, the ith character of q = ci.

3. ∀(ci, hi) ∈ g if hi ̸= EM then ∀q ∈ Q′, the ith character of q ̸= ci.

4. ∀c ∈ C if ∄(ci, hi) ∈ g, ci = c, hi = WC then ∀q ∈ Q′, |{(ci, hi) ∈ g, ci = c}| ≤ number of

characters c ∈ q.

5. ∀c ∈ C if ∃(ci, hi) ∈ g, ci = c, hi = WC then ∀q ∈ Q′, |{(ci, hi) ∈ g, ci = c, hi ∈ {EM, WP}}| =

Number of characters c ∈ q.

Objective

1. Find all equations from Q ⊆ Qall satisfying the constraints.

Algorithm

This algorithm is designed to update a list of equations based on the latest guess. The goal is to

remove equations from the current valid list of equations that do not satisfy constraints with respect

to the latest guess. An empty list ’to-remove’ is initialized. This list will store equations that need

to be removed. The algorithm loops through each equation in the list of current valid equations Q.

For each equation, initially the algorithm loops through each character in the equation and checks

two constraints are being followed against the hint hi and character ci from the latest guess for that

index position i .If hi is not EM and ci matches the character in the equation, or if hi is EM but ci

does not match the character in the equation, the equation is added to ’to-remove’, and the loop

breaks. This step ensures that equations are removed if they contain characters that don’t match

with the latest guess, considering the EM condition.

The algorithm, for each character c in the set of characters C , checks two additional constraints

that bound the number of occurrences of c in the latest guess based on the existence of a WC hint.

If there are no hints as WC for the character c in the latest guess g, and the count of c in the equation

Page 19



Nerdle CSE 202 (Winter 2024)

is less than the count of c in the latest guess g, the equation is added to ’to-remove’, and the loop

breaks. If there exists a hint WC for the character c in the latest guess g, the algorithm calculates the

count of characters with hints as EM or WP associated with c in g. If the count of c in the equation

does not match this count, the equation is added to ’to-remove’, and the loop breaks.

After identifying equations to be removed, the algorithm updates Q by taking the set difference

between Q and ’to-remove’. The algorithm returns the updated set Q′, which contains equations

that satisfy the conditions with respect to the latest guess g.

Algorithm 6 Computing Valid Equations

1: Input: Q (List of current valid equations), g the latest guess
2: Output: Updated Q′

3: Initialize an empty list to remove
4: for each equation in Q do
5: for each (i, char) in enumerate(equation) do
6: (ci, hi)← g[i]
7: if hi ̸= EM and ci = char then
8: Append equation to to remove
9: break
10: else if hi = EM and ci ̸= char then
11: Append equation to to remove
12: break
13: end if
14: end for
15: for each c in C do
16: if all((ci, hi) ̸= (c, WC) for (ci, hi) in g) then
17: if sum(1 for char in equation if char == c) < sum(1 for(ci, hi) in g if ci = c) then
18: Append equation to to remove
19: break
20: end if
21: else if any((ci == c and hi == WC) for ci, hi in g) then
22: wc count← sum(1 for (ci, hi) in g if ci = c and hi ∈ {EM, WP})
23: if sum(1 for char in equation if char == c) ̸= wc count then
24: Append equation to to remove
25: break
26: end if
27: end if
28: end for
29: end for
30: Q′ ← set.difference(Q, to remove)
31: return Q′

Page 20



Nerdle CSE 202 (Winter 2024)

Correctness

This algorithm is intended to update a set of equations, Q, after a new guess is made by a player.

The objective of the algorithm is to remove any equation from Q that cannot be used as the target

equation because of the hints from an evaluation result. To prove the correctness of the algorithm,

we need to show that:

1. The algorithm correctly handles each of the three possible hints (EM, WP, and WC) and removes

all equations from Q that are inconsistent with the evaluation result.

2. Q′ ⊆ Qall

To prove the first point, we can analyze the hint cases:

1. For the EM case, we can observe that if an equation does not contain the given character in

the specified position, it cannot be the target equation. Therefore, removing such equations

from Q is correct and does not remove any valid equations.

2. Based on the presence of a WC hint, there are two additional constraints regarding the occur-

rence of a specific character in the output equation:

• If there is no WC hint for a particular character, then the number of times the character

appears in the equation must be greater than or equal to the number of times it appears

in the guess, or else the equation cannot be the target equation.

• If there is a WC hint for a particular character, then the number of times the character

appears in the equation must be equal to the number of times it appears with a hint

other than WC in the guess, or else the equation cannot be the target equation.

3. Therefore, removing such equations from Q is correct and does not remove any valid equations.

Finally since Q was already a subset of Qall and we are only removing equations from it, hence the

updated set Q′ is still a subset of Qall. In conclusion, the algorithm above is correct and removes

all equations from Q that are inconsistent with the hints provided by the evaluation result, while

leaving only the equations that are consistent with the clues and form the possible valid set of

Page 21



Nerdle CSE 202 (Winter 2024)

equations for the game.

Time Complexity

The time complexity depends on the equation length and the size of the set of current valid equations

Q. The equation length is always constant and is equal to k. Suppose the size of Q is m. To analyze

the time complexity of the provided algorithm, let’s break it down:

1. Initialization: Initializing an empty list to remove takes constant time, O(1).

2. Checking Equations:

a) For each equation in Q, the algorithm iterates through each character, requiring O(k)

time, where k is the length of the equation. Inside this loop:

• Retrieving the corresponding character-hint pair from the latest guess g takes con-

stant time, O(1).

• The condition checks and operations inside the loop have constant time complexity,

O(1).

b) For each equation in Q, the algorithm iterates over each character in the set of characters

C, requiring O(|C|) iterations. For each character c, the algorithm checks conditions

based on the latest guess g. For each condition check, it requires iterating over elements

in g, which has a size of O(k). The condition checks and operations inside the loop have

constant time complexity, O(1).

3. Constructing the set to remove involves iterating over the equations in Q and performing

checks for each equation. This operation has a time complexity of O(m× (|C|×k+k)). Since

k and |C| are constants, we get O(m).

4. Taking the set difference between Q and to remove to get the updated set Q′ has a time

complexity of O(|Q|) = O(m).

Hence, the overall time complexity of the algorithm is O(m) +O(m), i.e., O(m).

Page 22



Nerdle CSE 202 (Winter 2024)

7 Data Structure to maintain the game state

In the previous computational problems, we have presented several algorithms necessary for simu-

lating the Nerdle game. In this computational problem, our aim is to create a single data structure

called GameStateManager which maintains every important states of the game as it proceeds. The

data structure should call the previous computational problems as subroutines as they implement

the logic of the game.

There are two benefits of introducing this data structure:

• It can be used by other computational problems. For example, in the next computational

problem, we are going to search for the best equation that the player can make using a

variant of minimax algorithm. The implementation can utilize the data structure for optimized

implementation and clear abstraction.

• It can be used for experimentation and game simulation. We will use this data structure when

we are collecting data.

7.1 Design

We model the Nerdle game as a two-player game, where User plays agains Computer. The User

makes a “move” by guessing an Equation and the computer makes a “move” by providing the

Feedback for the last Equation that the User provided. The User and Computer must makes a

move alternately.

The data structure exposes certain methods to keep track of all the the Equations and Feedbacks

that the User and Computer has provided. It also provided certain methods to get further infor-

mation about the game (e.g. the list of equations that are possible as the solution). A complete

list of all the methods can be find in Table 1.

We can also consider a state machine with two states which represents whether it is the User’s or

Computer’s turn to move. Some of the methods will modify the state while the other methods are

only applicable for a specific state. For more explanation, see the Figure 4 that represents the state

machine diagram.

Page 23



Nerdle CSE 202 (Winter 2024)

Method Input Output Description

get possible equations None List[Equation]
Return all equations that can still
possibly be the hidden equation given
all guesses that have been made.

submit equation Equation None

User makes a move by submitting
an equation as a guess. It is now the
computer’s turn to make a move by
submitting a feedback.

revert equation None None Revert previous user’s move.

get possible feedbacks None List[Feedback]
When it is the computer’s turn to move,
return a list of all possible feedback that
the computer can give.

get reduce equations size Feedback int

Given that the computer makes a move
by submitting a particular feedback,
return the size of the reduced list of
possible equations.

submit feedback Feedback None

Computer makes a move by submitting
a feedback to the last guess’s equation.
It is now the user’s turn to make a move
by submitting the next equation.

revert feedback None None
Revert the previous feedback given by
the computer

Table 1: Methods supported by GameStateManager

Page 24



Nerdle CSE 202 (Winter 2024)

Figure 4: State transition for each methods in GameStateManager

In this report, we will assume that methods will be called accordingly based on whether it is the

User or the Computer turn to move. For example, consecutive alternate calls of submitEquation

and submitFeedback is a valid sequence of method calls.

7.2 Naive Implementation

The naive implementation is a very intuitive implementation that manages all the game states and

repeatedly calls the EvaluateGuess and FilterEquationsByGuesses to implement the required

logic.

Implementation

In the naive implementation, we will keep several lists as our game states:

• guess equations is the list of equations that the User submits as the game progresses. The

last element of the list should be the last guess the User made.

• feedbacks is the list of feedbacks that the Computer submits. The feedback on index i should

correspond to the guess’ equation on index i.

• possible equations versions keep tracks of possible equations that can still be possible given

the existing guesses. The first element is exactly the original list of all equations in the game.

Page 25



Nerdle CSE 202 (Winter 2024)

As the Usermakes more guesses, this list of equations get smaller and possible equations versions

keep track of all versions of this list.

The implementation utilizes previous computational problems as subroutines:

• EvaluateGuess (Section 5): given a guess and equation, return the appropriate feedback.

• FilterEquationsByGuesses (Section 6): given a list of possible equations and guesses, filter

the list for equations that satisfy the constraints based on the gueses.

The implementation of each method is described in the Algorithm 7.

Proof of Correctness

To prove the correctness, we will establish certain invariants that the algorithm should hold.

When it is the User’s turn to move:

• The guess equations and feedbacks have the same length and holds the previous guesses.

• The possible equations versions has one more element than guess equations.

• The last element of possible equations versions is the filtered list of possible equations that

satisfy all existing guesses made before.

When it is the Computer′s turn too move:

• The guess equations has one more element than feedbacks. The last element of guess equations

is the last equation that the User has submitted while the other holds the previous guesses.

• The possible equations versions is unchanged since before the User submit the last equation.

The methods below change the game turn from User to Computer or otherwise. They are also

modifying the internal lists of GameStateManager. We will show that they preserve the invariants

as defined below.

• SUBMIT EQUATION changes the turn from User to Computer. It append a new element to

the guess equations, which is the latest equation that the User has submitted. Based on

the previous invariant on the User’s turn, the guess equations and feedbacks have the same

length. Thus, now on the Computer’s turn, guess equations has one more element than the

Page 26



Nerdle CSE 202 (Winter 2024)

Algorithm 7 Naive Game State Manager

1: Class NaiveGameStateManager
2: Implements: GameStateManager
3: procedure Init(initial equations)
4: possible equations versions← [initial equations]
5: guess equations← []
6: feedbacks← []
7: end procedure
8: procedure get possible equations
9: return possible equations versions[−1]
10: end procedure
11: procedure submit equation(equation)
12: guess equations.append(equation)
13: end procedure
14: procedure revert equation
15: guess equations← guess equations[: −1]
16: end procedure
17: procedure get possible feedbacks
18: feedback set← empty set
19: for each hidden equation in possible equations versions[−1] do
20: guess← EvaluateGuess(guess equations[−1], hidden equation)
21: feedback set.add(tuple(get feedback from guess(guess)))
22: end for
23: return [list(feedback) for feedback in feedback set]
24: end procedure
25: procedure get reduce equations size(feedback)
26: guess← zip(guess equations[−1], feedback)
27: new possible equations← FilterEquationsByGuesses(possible equations versions[−1], guess)
28: return len(new possible equations)
29: end procedure
30: procedure submit feedback(feedback)
31: feedbacks.append(feedback)
32: guess← zip(guess equations[−1], feedback)
33: new possible equations← FilterEquationsByGuesses(possible equations versions[−1], guess)
34: possible equations versions.append(new possible equations)
35: end procedure
36: procedure revert feedback
37: feedbacks← feedbacks[: −1]
38: possible equations versions← possible equations versions[: −1]
39: end procedure
40: procedure zip(equation, feedback)
41: return [(e char, f char) for e char, f char in zip(equation, feedback)]
42: end procedure
43: procedure get feedback from guess(guess)
44: return [g char.hint for g char in guess]
45: end procedure

Page 27



Nerdle CSE 202 (Winter 2024)

feedbacks. The possible equations versions list is unchanged. Therefore, the Computer’s

turn invariant holds in this case.

• REVERT EQUATION reverts the actions made by the latest SUBMIT EQUATIONS by removing

the last element that has just been inserted into guess equations. As SUBMIT EQUATIONS

preservers the invariant, the revert also preserves the invariant.

• SUBMIT FEEDBACK changes the turn from Computer to User. It append a new element to

the feedbacks, which is the feedback associated with the latest equation in guess equations.

Based on the previous invariant, there were previously one more element in guess equations.

Thus, with this new feedback inserted, there is now exactly the same number of elements

in guess equations and in feedbacks. The method also computed the newest reduced list

of possible equations by using the current list of possible equations and insert a singleton

list consisting of only the last guess. By the invariant, the current list already taken into

account all previous guess until before the last guess. By induction, the new list taken

into account all guesses that has been made so far. This new list will be appended into

possible equations versions, keeping the invariant of having one more element in this list

than guess equations.

• REVERT FEEDBACK reverts the actions made by the latest SUBMIT FEEDBACK by removing the

last element that has just been inserted into feedbacks and possible equations version.

Therefore, the User’s turn invariant holds in this case.

The methods below does not change the game turn and does not modify any internal lists. Thus,

we have shown that the invariant always holds as this data structure being used. We will now prove

that these methods implement the required functionalities correctly.

• GET POSSIBLE EQUATIONS returns the last element of the possible equations version, which

is the latest version of the list of possible equations by the invariant.

• GET POSSIBLE FEEDBACKS iterates overall possible equations and uses the EvaluateGuess sub-

routine to compute the feedback return by the game based on the rule of the game. It added

them into a set for deduplication and return the elements in a list. This is consistent with the

Page 28



Nerdle CSE 202 (Winter 2024)

requirement.

• GET REDUCE EQUATIONS SIZE essentially simulates the logic of SUBMIT FEEDBACK without ac-

tually inserting the feedback and result to the internal list. Thus, the methods correctly

returns the number of possible equations in the new reduced list if a specific feedback is

materialized.

Time Complexity Analysis

Let n be the number of possible equations in the initial equations and letm be the number of possi-

ble equations in the latest version of list of possible equations (i.e. possible equations versions[−1]).

We know that for any i, possible equations versions[i+1] is a subset of possible equations version[i].

Therefore, we know that m = O(n).

Most of the time complexity of each methods will be either O(1) or O(m).

• GET POSSIBLE EQUATIONS returns the last element of the possible equations versions. Thus,

the time complexity is O(1).

• SUBMIT EQUATION and REVERT EQUATION are O(1) operations.

• GET POSSIBLE FEEDBACKS iterates overall possible equations and uses the EvaluateGuess sub-

routine to compute the feedback return by the game based on the rule of the game. The

complexity of EvaluateGuess is O(1). Therefore, the overall time complexity is O(m).

• GET REDUCE EQUATIONS SIZE calls the FilterEquationsByGuesses with an input list of length

m and a guess list of length 1. The time complexity is this subroutine call is O(m). Other

operations inside the methods are O(1). Therefore, the overall time complexity is O(m).

• SUBMIT FEEDBACK is similar to GET REDUCE EQUATIONS SIZE, where it calls

FilterEquationsByGuesses once with an input list of length m and a guess list of length 1.

The overall time complexity is O(m).

• REVERT FEEDBACK is an O(1) operation.

7.3 Optimized Implementation

The previous naive implementation is sufficient to solve the next computational problem, which is

to compute the next best equation that a user can make using a variant of minimax algorithm.

Page 29



Nerdle CSE 202 (Winter 2024)

However, it won’t be as optimized. Therefore, we provide an optimized implementation, which

implements the exact some requirement, but with different time complexity trade-off.

The key idea is to do additional pre-computation when calling SUBMIT FEEDBACK. This will in-

crease the time complexity of SUBMIT FEEDBACK to linear time but decrease the time complexity of

GET POSSIBLE FEEDBACKS and GET REDUCE EQUATIONS SIZE.

Implementation

In addition to the several lists that we keep track in the naive implementation, we are going to

store one more list called equation clusters versions. Similar to possible equations versions, the

word versions here means that it keep track of all versions as the game progress with every guesses

made. Given a new equation that the User has submitted, we can iterate over all possible equations

and call EvaluateGuess to get the feedback. Different equations can lead to the same feedback.

We want to partition the list of possible equations by the feedback that it leads to. Therefore, the

element of equation clusters versions is a dictionary that maps a feedback into a sub-list of the

current list of possible equations which all leads to the same particular feedback.

Proof of Correctness

In addition to the invariants described in the previous NaiveGameStateManager, we will add one

additional invariants.

When it is the Computer’s turn to move, the equation clusters versions have the same length

as guess equations, and the last element is a dictionary representing the partition of the current

possible list of equations based on the feedback on the last guess.

All the previous invariants from Naive Game State Manager are unchanged as the previous 3 lists

are not modified. The SUBMIT EQUATION is the only method modifying equation clusters versions

and it pre-computed the newest partition map by iterating over all possible candidate of hidden

equations and evaluating the current guess against the hidden equation. Therefore, this preservers

the invariant.

We will also show the correctness of the modified functions:

Page 30



Nerdle CSE 202 (Winter 2024)

Algorithm 8 Optimized Game State Manager

1: Class OptimizedGameStateManager
2: Implements: GameStateManager
3: procedure Init(initial equations)
4: possible equations versions← [initial equations]
5: guess equations← []
6: feedbacks← []
7: equation clusters versions← []
8: end procedure
9: procedure get possible equations
10: return possible equations versions[−1]
11: end procedure
12: procedure submit equation(equation)
13: guess equations.append(equation)
14: clusters← {}
15: for each hidden equation in possible equations versions[−1] do
16: guess← EvaluateGuess(guess equations[−1], hidden equation)
17: feedback ← get feedback from guess(guess)
18: clusters[tuple(feedback)].append(hiddenequation)
19: end for
20: equation clusters versions.append(clusters)
21: end procedure
22: procedure revert equation
23: guess equations← guess equations[: −1]
24: equations clusters versions← equations clusters versions[: −1]
25: end procedure
26: procedure get possible feedbacks
27: return [list(feedback) for feedback in equation clusters list[−1]]
28: end procedure
29: procedure get reduce equations size(feedback)
30: return len(equation clusters versions[−1][tuple(feedback)]))
31: end procedure
32: procedure submit feedback(feedback)
33: feedbacks.append(feedback)
34: guesses← [zip(guess equations[−1], feedback)]
35: possible equations versions.append(equation clusters versions[−1][tuple(feedback)])
36: end procedure
37: procedure revert feedback
38: feedbacks← feedbacks[: −1]
39: possible equations versions← possible equations versions[: −1]
40: end procedure
41: procedure get feedback from guess(guess)
42: return [g char.hint for g char in guess]
43: end procedure

Page 31



Nerdle CSE 202 (Winter 2024)

• GET POSSIBLE FEEDBACKS: the pre-computed mapping is computed by iterating over all pos-

sible candidate of hidden equations. Thus, the list of the keys of the mapping are the list of

all possible feedback.

• GET REDUCE EQUATIONS SIZE: let f be the particular feedback submitted by the Computer.

Calling FilterEquationsByGuesses with the last guess will filter out the words that does

not satisfy the constraint induced by the last guess. However, during the pre-computation,

we have done exactly the same thing by calling EvaluateGuess and we exactly partitions the

list of possible equations into clusters which will be the new list of possible equations if the

feedback associated with them is chosen. Thus, we can just use the dictionary to return the

size of the new reduced list of equations.

• SUBMIT FEEDBACK: similar to the previous point, we can just use the value from the mapping

and append it to the possible equations versions.

Time Complexity Analysis

Let n be the number of possible equations in the initial equations and letm be the number of possi-

ble equations in the latest version of list of possible equations (i.e. possible equations versions[−1]).

We know that for any i, possible equations versions[i+1] is a subset of possible equations version[i].

Therefore, we know that m is O(n).

Most of the time complexity of each methods will be either O(1)orO(m).

• GET POSSIBLE EQUATIONS returns the last element of the possible equations versions. Thus,

the time complexity is O(1).

• SUBMIT EQUATION iterates overall possible equations and uses the EvaluateGuess subroutine

to compute the feedback return by the game based on the rule of the game. The complexity

of EvaluateGuess is O(1). Therefore, the overall time complexity is O(m).

• REVERT EQUATION is an O(1) operations.

• GET POSSIBLE FEEDBACKS iterates over the partition mapping to get the keys which are the

feedback list. The number of feedback is bounded by the number of possible equations.

Therefore, the overall time complexity is O(m).

Page 32



Nerdle CSE 202 (Winter 2024)

Method Naive Implementation Optimized Implementation

get possible equations O(1) O(1)
submit equation O(1) O(m)
revert equation O(1) O(1)
get possible feedbacks O(m) O(m)
get reduce equations size O(m) O(1)
submit feedback O(m) O(1)
revert feedback O(1) O(1)

Table 2: Time Complexity Comparison between Naive and Optimized Implementation

• GET REDUCE EQUATIONS SIZE is an O(1) operation because getting an element from dictionary,

getting the last element from a list, and getting the length of a list are all constant time.

• SUBMIT FEEDBACK and REVERT FEEDBACK is an O(1) operation.

7.4 Time Complexity Comparison

As shown in the Table 2, there is a difference in time complexity between the Naive Implementation

and the Optimized Implementation. They key difference is that GET REDUCE EQUATIONS SIZE is

optimized from O(m) into O(1). The trade-off is that SUBMIT EQUATION is now O(m) as we are

doing precomputation. However, this will lead to an improved runtime for the next computational

problem from O(n3) to O(n2).

Page 33



Nerdle CSE 202 (Winter 2024)

8 Figuring the best equation the player can use as the next

guess

We aim to determine the best possible starting equation that would provide the most information

for the player. This approach could be extended later to assist the user in deciding which word to

guess throughout the game when there are more clues.

We want to assist the player in solving the game by acting as the player and submitting the most

effective guess. The objective is to reduce the total number of guesses required to figure out the

solution.

Input

1. List of valid equations (Q).

Output

1. An equation q.

Constraints

1. q ∈ Q.

Objective

1. Find the equation that reduces the search space maximally (results in minimum possible

search space)

Min-Average

Minmax algorithm is a decision-making algorithm used in game theory, specifically for two-player

zero-sum games. The two players are working towards opposite goals to make predictions about

which future states will be reached as the game progresses, and then proceeds accordingly to opti-

mize its chance of victory. It is based on the idea that the algorithm’s opponent will be trying to

minimize whatever value the algorithm is trying to maximize (hence, ”minimax”).

We use min-average algorithm, a version of minmax algorithm, to find the next best guess that a

user can make. Unlike minmax, the computer’s objective is not really to oppose the user but rather

evaluate the user’s guess against each possible win equation. Therefore, the computer computes a

Page 34



Nerdle CSE 202 (Winter 2024)

weighted average of the children’s heuristic values. On the other hand, the user’s objective is to

minimize the search space of possible equations. The user selects the move that corresponds to the

lowest value among its children.

There are two major steps in the algorithm

1. Building a tree - The game tree represents all possible moves that both players can make from

the current state of the game. It consists of alternate levels of user and computer nodes. For

the user nodes, all possible equations are evaluated and for the computer nodes all possible

feedbacks are evaluated. At the terminal nodes, the heuristics are computed to evaluate the

desirability of that state.

2. Back-propagating the heuristic - In order to compute the best guess that a user can make, the

heuristic values and corresponding moves are propagated back up the tree. If it’s the user’s

turn, they select the move that corresponds to the minimum reduced size of equations among

the possible options. If it is the computer’s turn, they compute the weighted average of their

children’s values. The heuristic that we use is the size of the reduced set of possible equations

after making a guess and getting a feedback.

Building a Tree

We present the procedure to build the tree in Algorithm 9. Each node in the tree has the following

attributes

1. player type - indicating whether it is a User node or a Computer Node

2. terminal value - stores the heuristic value (only for the terminal nodes)

3. child Node - List of tuples of the form (equation, Node) to keep track of the guess equation

that leads to the child node. The user’s children nodes take this form whereas the computer’s

children nodes take the form (None, Node) since their moves are based on feedback.

We build the tree in a depth-first manner using recursion. The User nodes are present at the root

and in even heights of the tree. Computer nodes are present in odd heights.

Page 35



Nerdle CSE 202 (Winter 2024)

In case of a user node, we do the following: submit an equation as a guess, create a child node of

type computer, build subtree for the child node and revert the guess equation to try the next one.

In case of computer node, we perform the following: submit the feedback, compute the reduced

size of resulting equation set, create a child node of type user, set the terminal value to heuristic

(reduced set size), build subtree for the child node and revert the feedback to try the next one.

Algorithm 9 Build Tree

1: procedure BuildTree(self, node = None, depth = 0)
2: if depth == 0 then
3: return
4: else if (depth%2) == 1 then
5: current possible feedbacks← self.gameStateManager.get possible feedbacks()
6: for f in current possible feedbacks do
7: terminal value← None
8: if depth == 1 then
9: reduced equation size← self.gameStateManager.get reduce equations size(f)
10: terminal value← reduced equation size
11: end if
12: childNode← Node(terminal value,USER)
13: node.children.append((None, childNode))
14: if depth ̸= 1 then
15: self.gameStateManager.submit feedback(f)
16: BuildTree(self, childNode, depth− 1)
17: self.gameStateManager.revert feedback()
18: end if
19: end for
20: else if (depth%2) == 0 then
21: current possible equations← self.gameStateManager.get possible equations()
22: for eq in current possible equations do
23: childNode← Node(None,COMPUTER)
24: node.children.append((eq, childNode))
25: self.gameStateManager.submit equation(eq)
26: BuildTree(self, childNode, depth− 1)
27: self.gameStateManager.revert equation()
28: end for
29: end if
30: end procedure

Back-propagating the heuristic

The procedure to back-propagate the heuristic up the tree is outlined in Algorithm 10. We perfom

Page 36



Nerdle CSE 202 (Winter 2024)

back-propagation recursively. In case of leaf node, the heuristic (terminal value) is returned. For

the User node, the minimum value among the children and the corresponding guess equation is

returned. For the Computer Node, the weighted average of the children values are returned. The

weights are the heuristics in this case.

Algorithm 10 Expectimin

1: procedure Expectimin(self, node = None)
2: if node.is terminal() then
3: return None, node.terminal value
4: else if node.player type == USER then
5: value← float(’inf’)
6: eq← []
7: for n in node.children do
8: exp value← self.expectimin(n[1])
9: if exp value[1] < value then
10: value← exp value[1]
11: eq← n[0]
12: end if
13: end for
14: return eq, value
15: else if node.player type == COMPUTER then
16: value← 0
17: num children← len(node.children)
18: if num children ̸= 0 then
19: nr← 0
20: dr← 0
21: for n in node.children do
22: exp value[1]← self.expectimin(n[1])
23: nr← nr + exp value[1]× exp value[1]
24: dr← dr + exp value[1]
25: end for
26: value← nr/dr
27: end if
28: return None, value
29: end if
30: return
31: end procedure

Correctness

We perform min-average at each level of the tree (consecutive user and computer depths) and

back-propagate the result to the level above it. At the root node, we get the guess that maximally

Page 37



Nerdle CSE 202 (Winter 2024)

reduces the search space.

We prove this using induction.

Base Case For level = 1 (that is depth = 2), we have one layer of user node and one layer of

computer nodes. The computer nodes return the weighted average of the heuristic (reduced set

size) and the user node chooses the guess corresponding to the minimum weighted average. So, the

user makes a guess that leads to a maximum reduction in set of possible equations

Inductive Hypothesis We assume that the user makes the best guess for a tree of level = k where

k > 1

To prove We need to prove that the user makes the best guess for a tree of level = k + 1

Proof

We have to show that the problem for level = k + 1 is exactly the same as the sub-problem with

level = k.

The algorithm consists of two phases:

1. Building the tree - the tree is constructed in a recursive fashion depth-first manner. Let R be

the new root user node, C be the child computer nodes and U is the list of all the children

of computer nodes. We call the build tree on R which creates all child nodes in C. We then

call build tree for the nodes in C which creates the nodes in U . When we call build tree for

all nodes in U , it is exactly the same as building a tree for level = k which is optimal by the

induction hypothesis.

2. Back-propagating the feedback - we are back-propagating the heuristic also in a recursive

fashion. By inductive hypothesis, we have the best guess equations and the averaged heuristics

at level = k, i.e, we have the best guess equations and the averaged heuristics for all nodes in

U . For level = k + 1, we pick the equation that has the minimum averaged heuristic among

all the best guesses of nodes in U . Hence, we can say that we are choosing the best move for

level = k + 1.

Page 38



Nerdle CSE 202 (Winter 2024)

Time Complexity

Total time complexity of the min-average algorithm is the sum of the following:

1. Time Complexity for Building the Tree - Let n be the number of possible equations. Let level

represent a pair of consecutive user and computer layers, i.e, level = depth/2.

First, we will find the number of nodes in the tree.

The number of nodes at depth = 0 is 1. The number of nodes at depth = 1 is n where n

is the number of possible equations. The number of nodes at depth = 2 (corresponding to

the children of Computer nodes) is n ∗m where m is the number of possible feedback. But

the number of feedback is bounded by the number of possible equations. Hence, it is n2.

Though there might be a significant decrease in the size of possible equations in subsequent

levels, it is still bounded by O(n2). Generalizing this, the number of nodes at depth = d is

O(nd). In terms of level (one layer of user nodes and one layer of computer nodes), we have

depth = 2 · level. Therefore, for level = k the number of nodes is O(n2·k).

Now, we look at the time complexity for each node in one level.

For each user node, we get the set of possible equations. The time complexity for this part is

O(1). For each guess of the user node, we have the following operations: submit an equation

as a guess O(n), revert the guess equation to try the next one O(1). The time complexity for

n such guesses is given by O(n ·n)+O(n ·1) = O(n2). Therefore, time complexity for one user

node is T(get possible equations) + T(operations for all the guesses) = O(1)+O(n2) = O(n2)

For each computer node at height ̸= 1 or depth ̸= 2·k, we get the set of possible feedback. The

time complexity for this part is O(n). For each feedback of the computer node, we have the

following operations: submit the feedback O(1), revert the feedback to try the next one O(1).

The time complexity for n such feedback is given by O(n ∗ 1) + O(n ∗ 1) = O(n) Therefore,

time complexity for one computer node is T(get possible feedback) + T(operations for all the

feedback) = O(n) +O(n) = O(n)

Page 39



Nerdle CSE 202 (Winter 2024)

For each computer node at height == 1 depth == 2 · k − 1, we get the set of possible

feedback. The time complexity for this part is O(n). For each feedback of the computer node,

we have the following operations: compute the reduced size of resulting equation set O(1). The

time complexity for n such feedback is given by O(n · 1) = O(n) Therefore, time complexity

for one computer node is T(get possible feedback) + T(operations for all the feedback) =

O(n) +O(n) = O(n).

We do not perform any operations for the leaf nodes, i.e, nodes at depth = 2 · k. For each

computer node, the time complexity for all operations is O(n). For each user node, the time

complexity for all operations is O(n2).

The total time complexity is
∑k−1

i=0 n
2·i ·O(n2) +

∑k−1
i=0 n

2·i+1 ·O(n) = O(n2·k)

2. Time complexity for Back-propagating the heuristic - It is linear in terms of the number of

nodes in the tree. Above, we proved that the number of nodes at the end of level = k is

O(n2·k). Therefore, the time complexity for level = k is O(n2·k).

Total Time Complexity is given by

Time Complexity = O(n2·k) +O(n2·k)

= O(n2·k)

Page 40



Nerdle CSE 202 (Winter 2024)

9 Experiments

We implemented our project and ran all our experiments in Python 3.10. The experiments were

run on a Apple Macbook Pro (3.2 GHz Octa-Core Apple M1 Pro) with 16 GB RAM.

9.1 Time complexity for generating valid equations and expressions

It took us 13.50 seconds to generate all possible 17723 valid equations. This function utilizes

generate expressions internally and calls it thrice with parameters = 4, 5 and 6. We chose

to profile the function generate expressions since it is responsible for producing a core set of

expressions upon which the logic for generating valid equations depends.

Figure 5: Execution Time (seconds, log scale) vs. Length of Expressions

The log plot is linear suggesting a exponential time complexity of the function. The gradient of

the plot is roughly 2.570. e2.570 ≈ 13.06. We expected the exponent to be 14 if we had done no

pruning at all, and 10 if we only used digits. This sets the range for the observed exponent between

10 and 14. We can also deduce that since there are 14 choices for every character and we rule

out consecutive operators, using probably we get 180 valid choices / 196 total choices = 0.918.

0.918× 14 = 12.85 which is very close to what we observed.

Page 41



Nerdle CSE 202 (Winter 2024)

9.2 Time complexity for figuring the best equation

We are now able to combine all components of our projects and evaluate the feasibility of using our

project to effectively figure out the best equation for solving Nerdle.

The main part of the solver is running the Min-Average algorithm with a particular implementation

of GameStateManager. Min-Average can be run using different search depth, but the default

search depth is 1). There are also two different implementation of GameStateManager: naive and

optimized.

Naive vs Optimized implementation

For our first experiment, we set the search depth = 1, and use both the naive and optimized

GameStateManager. We tested by first sampling a subset of the original set of 17K equations. We

use power of two for the size of the subset.

The result can be found in Figure 6

Evaluation:

We have previously shown that for search depth = 1, the runtime for figuring out best equation is:

• Using Naive GameStateManager: O(n3)

• Using Optimized GameStateManger: O(n2).

The experiment result is shown in a log-log graph. The result is as expected because the runtime

for the naive implementation has higher slope which implies higher exponent for the overall runtime

compared to the optimized version.

Page 42



Nerdle CSE 202 (Winter 2024)

Figure 6: Execution Time for various implementation

Search depth = 1 vs 2

The next experiment that we conduct is to compared the runtime for running the Min-Average

algorithm using the optimized GameStateManager using different search depth = 1.

The result can be found in Figure 7.

Evaluation:

We have previously shown that if we use the Optimized GameStateManager, the runtime for figuring

out best equation is:

• Search depth = 1: O(n2)

• Search depth = 2: O(n4)

The experiment result is shown in a log-log graph. The result shown that with search depth =

2, the runtime is slower than search depth = 1. However, the runtime growth is not as slow as

expected, which is O(n4). The reason is that in general, after the first guess, the possible equation

set has reduced significantly as demonstrated in the next section. For example, with initial set of

1024 equations, after the first guess the possible equation set is reduced to less than 10 equations.

Page 43



Nerdle CSE 202 (Winter 2024)

Therefore, the time complexity does not grow as fast as O(n4). Our experiment result is expected.

Figure 7: Execution Time for search depth

9.3 Best starting equation

We use our algorithm to find the best equation as the starting point. We use the Optimized

implementation with search depth = 1 and we found that the best equation to start is

48− 16 = 32

The overall time required to compute this best starting equation is 23 minutes. While this is very

slow, this computation is only needed once as the best starting equation is always the same as there

are no guesses yet to be made.

Figure 8 presents a histogram of reductions in the search space size using our best initial guess

(48 − 16 = 32) for all possible win equations. We can conclude that the search space has reduced

to size less than 110 for all the win equations. Majority of win equations have their search space

reduced to less than 50. We can see a decreasing trend in the number of win equations as the

reduction values increases. Hence, we can conclude that our initial guess was indeed the best.

Page 44



Nerdle CSE 202 (Winter 2024)

Figure 8: Histogram showing reductions in search space using our best initial guess

9.4 Conclusion

Our main conclusion is that our implementation is a feasible approach to solve Nerdle effectively

and quickly. While figuring the best starting equation is slow, this is a one-time operation that

need not be repeated every time. After the first guess, based on our statistical finding, the set of

possible equations is reduced to less than 100 equations. At that number of equations, running our

optimized implementation with search depth = 1 requires less than 0.1 second per guess, and with

search depth = 2 requires less than 0.5 second per guess.

Page 45


	Introduction
	How Nerdle is Played
	Game Objective
	Game Layout
	Rules of Nerdle
	Step-by-step Guide
	Game Walkthrough

	Terminology
	Computing the list of valid mathematical equations for the solution
	Evaluating the guess equation
	Computing a set of valid mathematical equations given a guess
	Data Structure to maintain the game state
	Design
	Naive Implementation
	Optimized Implementation
	Time Complexity Comparison

	Figuring the best equation the player can use as the next guess
	Experiments
	Time complexity for generating valid equations and expressions
	Time complexity for figuring the best equation
	Best starting equation
	Conclusion


